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CONCEPTS
The complex motion of a rigid body can be analysed as a 

combination of two types of motion: translation and rotation. 

Both these types of motion are studied separately in this study 

guide (pages 9 and 65).

mg

A bottle thrown through the air – the centre of mass of the 

bottle follows a path as predicted by projectile motion. In 

addition the bottle rotates about one (or more) axes.

Translational motion is described using displacements, velocities 

and linear accelerations; all these quantities apply to the centre 
of mass of the object. Rotational motion is described using 

angles (angular displacement), angular velocities and angular 

accelerations; all these quantities apply to circular motion about a 

given axis of rotation.

The concept of angular velocity, ω, has already been introduced 

with the mechanics of circular motion (see page 66) and is 

linked to the frequency of rotation by the following formula:

frequencyangular velocity

ω = 2π f

Translational motion Rotational motion

Every particle in the object 

has the same instantaneous 

velocity

Every particle in the object 

moves in a circle around the 

same axis of rotation

Displacement, s, measured 

in m
Angular displacement, θ, 

measured in radians [rad]

Velocity, v, is the rate of 

change of displacement 

measured in m s-1

v =  ​ ds _ 
dt

 ​

Angular velocity, ω, is the 

rate of change of angle 

measured in rad s-1

ω = ​ dθ _ 
dt

 ​

Acceleration, a, is the rate of 

change of velocity measured 

in m s-2

a =  ​ dv _ 
dt

 ​

Angular acceleration, α, is 

the rate of change of angular 

velocity measured in rad s-2

α = ​ dω _ 
dt

 ​

Comparison of linear and rotational motion

EQUATIONS OF UNIFORM ANGULAR ACCELERATION
The definitions of average linear velocity and average linear 

acceleration can be rearranged to derive the constant acceleration 

equations (page 11). An equivalent rearrangement derives the 

equations of constant angular acceleration.

Translational motion Rotational motion

Displacement	 s

Initial velocity	 u

Final velocity	 v

Time taken	 t

Acceleration	 a

[constant]

Angular displacement 	 θ

Initial angular velocity	 ω
i

Final angular velocity 	 ω
f

Time taken	 t

Angular acceleration	 α

[constant]

v = u + at ω
f
 = ω

i
 + αt

s = ut + ​ 1 _ 
2
 ​ at2 θ = ω

i
t + ​ 1 _ 

2
 ​ αt2

v2 = u2 + 2as ω
f
2 = ω

i
2 + 2αθ

s =  ​ 
(v + u)t

 _ 
2

 ​  θ =  ​ 
(ω

f
 + ω

i
 )t
 _ 

2
 ​

Translational and rotational motion
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EXAMPLE: BICYCLE WHEEL
When a bicycle is moving forward at constant velocity v, the 

different points on the wheel each have different velocities. 

The motion of the wheel can be analysed as the addition of 

the translational and the rotational motion.

a)	 	Translational motion

The bicycle is moving forward at velocity v so the 

wheel’s centre of mass has forward translational motion 

of velocity v. All points on the wheel’s rim have a 

translational component forward at velocity v.

translational component of
velocity ν

b)	 	Rotational motion

The wheel is rotating around the central axis of rotation 

at a constant angular velocity ω. All points on the wheel’s 

rim have a tangential component of velocity v (= rω)

ν

ν

ν

tangential 
component of
velocity ν

c)	 	Combined motion

The motion of the different points on the wheel’s rim is 

the vector addition of the above two components:

Point at side of  wheel is moving 
with instantaneous velocity of
√2ν, at 45° to the horizontal 

Point in contact with
ground is at rest.
Instantaneous
velocity is zero

Point at top of wheel is 
moving with instantaneous 
velocity of 2ν, forward
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RELATIONSHIP BETWEEN LINEAR AND ROTATIONAL 
QUANTITIES
When an object is just rotating about a fixed axis, and there is no 

additional translational motion of the object, all the individual 

particles that make up that object have different instantaneous 

values of linear displacement, linear velocity and linear 

acceleration. They do, however, all share the same instantaneous 

values of angular displacement, angular velocity and angular 

acceleration. The link between these values involves the distance 

from the axis of rotation to the particle.

rigid body
m2

r2

m1

V1

V1 ≠ V2

r1
V2, instantaneous 
       velocity

instantaneous velocity

Rotation about
axis. All particles
have same
instantaneous
angular velocity

particle 1

particle 2

axis
of rotation
(into the page)

ω

a)	 Displacements

Distance travelled 

on circular path

Angular displacement

Distance from axis of 

rotation to particle

s = rθ

b)	 Instantaneous velocities

Linear instantaneous 

velocity (along the 

tangent)

Angular velocity

Distance from axis of 

rotation to particle

v = rω

c)	 Accelerations 

�The total linear acceleration of any particle is made up of 

two components:  

a)	 The centripetal acceleration, a
r
, (towards the axis 

of rotation – see page 65), also known as the radial 
acceleration.   

Tangential velocity Angular velocity

Distance from axis of 

rotation to particle

a
r
 = ​ 

v2

 _
 r ​  = rω2

Centripetal acceleration 

(along the radius)

b)	 An additional tangential acceleration, a
t
, which results 

from an angular acceleration taking place.  If α = 0, then 

a
t
 = 0.

Angular acceleration

Distance from axis of 

rotation to particle

a
t
 = rα

Instantaneous acceleration 

(along the tangent)

The total acceleration of the particle can be found by vector 

addition of these two components: a = r​√
______

 ω4 + α2 ​

Translational and rotational relationships
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THE MOMENT OF A FORCE: THE TORQUE Γ
A particle is in equilibrium if its acceleration is zero.  This occurs 

when the vector sum of all the external forces acting on the 

particle is zero (see page 16).  In this situation, all the forces 

pass through a single point and sum to zero.  The forces on 

real objects do not always pass through the same point and can 

create a turning effect about a given axis. The turning effect is 

called the moment of the force or the torque. The symbol for 

torque is the Greek uppercase letter gamma, Γ. 

The moment or torque Γ of a force, F about an axis is defined as 

the product of the force and the perpendicular distance from 

the axis of rotation to the line of action of the force.

Γ = Fr⊥

forcemoment or torque

perpendicular distance

Γ = Fr sin θ

axis of

r

rotation

perpendicular
distance from O

to line of action of F

r⊥

force F

O

line of action of F

θ

θ

Note:

•	 The torque and energy are both measured in N m, but only 

energy can also be expressed as joules.

•	 The direction of any torque is clockwise or anticlockwise 

about the axis of rotation that is being considered. For the 

purposes of calculations, this can be treated as a vector 

quantity with the direction of the torque vector considered 

to be along the axis of rotation. In the example above, the 

torque vector is directed into the paper. If the force F was 

applied in the opposite direction, the torque vector would be 

directed out of the paper.

COUPLES
A couple is a system of forces that has no resultant force but 

which does produce a turning effect.  A common example is 

a pair of equal but anti-parallel forces acting with different 

points of application.  In this situation, the resultant torque 

is the same about all axes drawn perpendicular to the plane 

defined by the forces.

arbitrary
axis

Torque of forces  = F(x + d) - Fx
= Fd  clockwise

This result is independent of position of axis, O

F

O
F

d

x

ROTATIONAL AND TRANSLATIONAL EQUILIBRIUM
If a resultant force acts on an object then it must accelerate 

(page 17).  When there is no resultant force acting on an 

object then we know it to be in translational equilibrium 

(page 16) as this means its acceleration must be zero.  

Similarly, if there is a resultant torque acting on an object then 

it must have an angular acceleration, α.  Thus an object will 

be in rotational equilibrium only if the vector sum of all the 

external torques acting on the object is zero.

If an object is not moving and not rotating then it is said to be 

in static equilibrium. This must mean that the object is in 

both rotational and translational equilibrium.

For rotational equilibrium: 

α = 0 ∴ ∑ Γ = 0

In 2D problems (in the x-y plane), it is sufficient to show 

that there is no torque about any one axis perpendicular 

to the plane being considered (parallel to the z-axis). In 3D 

problems, three axis directions (x, y and z) would need to be 

considered.

For translational equilibrium: 

a = 0 ∴ ∑ F = 0

In 2D problems, it is sufficient to show that there is no 

resultant force in two different directions. In 3D problems 

three axis directions (x, y and z) would need to be considered.

5 N
axis into
page

3 N f N

3 m 2 m 2 m

In the example above, for rotational equilibrium: 

f = 2.25 N

Translational and rotational equilibrium
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CENTRE OF GRAVITY
The effect of gravity on all the different parts of the 

object can be treated as a single force acting at the 

object’s centre of gravity. 

If an object is of uniform shape and density, the centre 

of gravity will be in the middle of the object. If the 

object is not uniform, then finding its position is not 

trivial – it is possible for an object’s centre of gravity to 

be outside the object. Experimentally, if you suspend 

an object from a point and it is free to move, then the 

centre of gravity will always end up below the point of 

suspension.

EXAMPLE 1

When a car goes across a bridge, the forces (on the bridge) are
as shown.

Taking moments about right-hand support:
clockwise moment = anticlockwise moment
            (R1 × 20 m) = (Wb × 10 m) + (Wc × 4 m)

Taking moments about left-hand support:
            (R2 × 20 m) = (Wb × 10 m) + (Wc × 16 m)

Also, since bridge is not accelerating: 
                      R1 + R2 = Wb + Wc

10 m 6 m 4 m
R2R1

Wb, weight of bridge
Wc, weight of car

When solving problems to do with rotational equilibrium 

remember:

•	 All forces at an axis have zero moment about that axis.

•	 You do not have to choose the pivot as the axis about which 

you calculate torques, but it is often the simplest thing to do 

(for the reason above).

•	 You need to remember the sense (clockwise or anticlockwise).

•	 When solving two-dimensional problems it is sufficient to show 

that an object is in rotational equilibrium about any ONE axis.

•	 Newton’s laws still apply. Often an object is in rotational 

AND in translational equilibrium. This can provide a simple 

way of finding an unknown force.

•	 The weight of an object can be considered to be concentrated 

at its centre of gravity.

•	 If the problem only involves three non-parallel forces,  the 

lines of action of all the forces must meet at a single point in 

order to be in rotational equilibrium.

R

W

P

3 forces must meet at a point if in equilibrium

Equilibrium examples
(a) plank balances if pivot is in middle

(b) plank rotates clockwise if pivot is to the left

(c) plank rotates anticlockwise if pivot is to the right

W

W

W

There is no moment about 
the centre of gravity.

centre of gravity

EXAMPLE 2
A ladder of length 5.0 m leans against a smooth wall (no 

friction) at an angle of 30° to the vertical.

a)	 Explain why the ladder can only stay in place if there is 

friction between the ground and the ladder.

b)	 	What is the minimum coefficient of static fraction 

between the ladder and the ground for the ladder to 

stay in place?

The reaction from the wall,
Rw and the ladder’s weight
meet at point P. For 
equilibrium the force from
the ground, Rg must also
pass through this point
(for zero torque about P). 
∴ Rg is as shown and has
a horizontal component
(i.e. friction must be acting)  

(a)

h

x

W

wall

ground

Q

Rw

Rg

P

5 m

60°

30°

Equilibrium conditions:-

Ff ≤ µsR

(b)RH

Rg Rv W = Rv

RH

using

= Rw

Rwh = Wxmoments
about Q

(    )
(      )

RH ≤ µsRv∴

µs ≥

µs ≥    =

&
Rw
W
x
h

2.5 cos 60
5.0 sin 60

µs ≥ 0.29∴

1 2

3

1

2

3
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NEWTON’S SECOND LAW – DEFINITION OF MOMENT OF INERTIA

O

�xed axis of
rotation

particle

angular
acceleration

rigid body

tangential
acceleration
at

F

α

Newton’s second law as applied to one particle in a rigid body

Newton’s second law applies to every particle that makes up a large 

object and must also apply if the object is undergoing rotational 

motion. In the diagram above, the object is made up of lots of 

small particles each with a mass m. F is the tangential component of 

the resultant force that acts on one particle. The other component, 

the radial component, cannot produce angular acceleration so it is 

not included. For this particle we can apply Newton’s second law:

F = m a
t
 = mrα

so torque Γ = (mrα)r = mr2 α

Similar equations can be created for all the particles that make 

up the object and summed together:

∑ Γ = ∑ mr2 α

or ∑ Γ
ext

 = α∑ mr2    (1)

Note that:

•	 Newton’s third law applies and, when summing up all the 

torques, the internal torques (which result from the internal 

forces between particles) must sum to zero.  Only the 

external torques are left.

•	 Every particle in the object has the same angular 

acceleration, α.

The moment of inertial, I, of an object about a particular axis is 

defined by the summation below:

I = ∑ mr2

moment of inertia

mass of an individual 

particle in the object

the distance of the particle 

from the axis or rotation

Note that moment of inertia, I, is

•	 A scalar quantity

•	 Measured in kg m2 (not kg m-2)

•	 Dependent on:

◊	 The mass of the object

◊	 The way this mass is distributed

◊	 The axis of rotation being considered.  

Using this definition, equation 1 becomes:

Γ = I α

resultant external 

torque in N m

moment of inertia in kg m2

angular acceleration in rad ​s​-2​

This is Newton’s second law for rotational motion and can be 

compared to F = ma

Newton’s second law – moment of inertia

MOMENTS OF INERTIA FOR DIFFERENT OBJECTS
Equations for moments of inertia in different situations do not need to be memorized.

Object Axis of  
rotation

moment of 
inertia

Object Axis of  
rotation

moment of 
inertia

thin ring (simple wheel)

m
r

thin ring

m
r

disc and cylinder (solid �ywheel)

m
r

thin rod, length d

m

d

through centre, 

perpendicular to 

plane

mr2

Sphere

through centre ​ 2 _ 
5
 ​  mr2

thin ring (simple wheel)

m
r

thin ring

m
r

disc and cylinder (solid �ywheel)

m
r

thin rod, length d

m

d

through a 

diameter
​ 1 _ 
2
 ​  mr2

thin ring (simple wheel)

m
r

thin ring

m
r

disc and cylinder (solid �ywheel)

m
r

thin rod, length d

m

d

through centre, 

perpendicular to 

plane

​ 1 _ 
2
 ​  mr2 Rectangular lamina

l
h

Through the 

centre of mass, 

perpendicular to 

the plane of the 

lamina

m​(​ l2 + h2

 _ 
12

  ​)​

thin ring (simple wheel)

m
r

thin ring

m
r

disc and cylinder (solid �ywheel)

m
r

thin rod, length d

m

d

through centre, 

perpendicular 

to rod

​ 1 _ 
12

 ​  md2

EXAMPLE
A torque of 30 N m acts on a wheel with moment of inertia  
600 kg m2. The wheel starts off at rest. 

a)	 	What angular acceleration is produced?

b)	 	The wheel has a radius of 40 cm.  After 1.5 minutes:

   i.	 what is the angular velocity of the wheel?

ii.	 how fast is a point on the rim moving?

a)	 	Γ = I α ⇒ α =  ​ Γ _ 
I
 ​  =  ​ 30 _ 

600
 ​  = 5.0 × 10-2 rad s-2

b)	 	  i.  ω = αt = 5.0 × 10-2 × 90 = 4.5 rad s-1

ii.  v = r ω = 0.4 × 4.5 = 1.8 m s-1
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ENERGY OF ROTATIONAL MOTION
Energy considerations often provide simple solutions to 

complicated problems. When a torque acts on an object, work is 

done.  In the absence of any resistive torque, the work done on 

the object will be stored as rotational kinetic energy.

axis of rotation

F

P

F

θ
r

Calculation of work done by a torque

In the situation above, a force F is applied and the object 

rotates. As a result, an angular displacement of θ occurs. The 

work done, W, is calculated as shown below:

W = F × (distance along arc) = F × rθ = Γθ

Using Γ = I α we know that W = Iαθ

We can apply the constant angular acceleration equation to 

substitute for αθ:

ω
f
2 = ω

i
2 + 2αθ

∴ W = I​(  ​ ωf
2

 _ 
2
 ​ - ​ 

ω
i
2

 ___ 
2
 ​ )​ = ​ 1 _ 

2
 ​ Iω

f
2 - ​ 1 _ 

2
 ​ Iω

i
2

This means that we have an equation for rotational KE: 

​E​
​K​

rot
​
​ = ​ 1 _ 

2
 ​ I ω2

Work done by the torque acting on object = change in 

rotational KE of object

The total KE is equal to the sum of translational KE and the 

rotational KE:

Total KE = translational KE + rotational KE

Total KE = ​ 1 _ 
2
 ​ Mv2 + ​ 1 _ 

2
 ​ Iω2

ANGULAR MOMENTUM
For a single particle

The linear momentum, p, of a particle of mass m which has a 

tangential speed v is m v.

The angular momentum, L, is defined as the moment of the 

linear momentum about the axis of rotation

Angular momentum, L = (mv)r = (mrω)r = (mr2)ω

For a larger object

The angular momentum L of an object about an axis of 

rotation is defined as 

Angular momentum, L = ∑(mr2)ω

L = Iω

Note that total angular momentum, L, is:

•	 a vector (in the same way that a torque is considered to be 

a vector for calculations)

•	 measured in kg m2 s-1 or N m s

•	 dependent on all rotations taking place.  For example, the 

total angular momentum of a planet orbiting a star would 

involve:

◊	 the spinning of the planet about an axis through the 

planet’s centre of mass and

◊	 the orbital angular momentum about an axis through 

the star.

CONSERVATION OF ANGULAR MOMENTUM
In exactly the same way that Newton’s laws can be applied to 

linear motion to derive:

•	 the concept of the impulse of a force

•	 the relationship between impulse and change in 

momentum 

•	 the law of conservation of linear momentum, 

then Newton’s laws can be applied to angular situations  

to derive:

•	 The concept of the angular impulse: 

Angular impulse is the product of torque and the time for 

which the torque acts:

angular impulse = ΓΔt

If the torque varies with time then the total angular 

impulse given to an object can be estimated from the area 

under the graph showing the variation of torque with 

time. This is analogous to estimating the total impulse 

given to an object as a result of a varying force (see 

page 23).

•	 The relationship between angular impulse and change in 

angular momentum: 

angular impulse applied to an object = change of 

angular momentum experienced by the object

•	 The law of conservation of angular momentum.

The total angular momentum of a system remains constant 

provided no resultant external torque acts.

Examples:

a)	 	A skater who is spinning on a vertical axis down their 

body can reduce their moment of inertia by drawing in 

their arms. This allows their mass to be redistributed so 

that the mass of the arms is no longer at a significant 

distance from the axis of rotation thus reducing Σmr2.

Extended arms mean
larger  radius and smaller
velocity of rotation.

Bringing in her arms 
decreases her moment
of inertia and therefore
increases her rotational
velocity.

b)	 	The Earth–Moon system produces tides in the oceans. As 

a result of the relative movement of water, friction exists 

between the oceans and Earth. This provides a torque that 

acts to reduce the Earth’s spin on its own axis and thus 

reduces the Earth’s angular momentum. The conservation 

of angular momentum means that there must be a 

corresponding increase in the orbital angular momentum 

of the Earth–Moon system. As a result, the Earth–Moon 

separation is slowly increasing.

Rotational dynamics
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SUMMARY COMPARISON OF EQUATIONS OF LINEAR AND ROTATIONAL MOTION
Every equation for linear motion has a corresponding angular equivalent:

Linear motion Rotational motion

Physics principles A resultant external force on a point object 

causes acceleration. The value of the 

acceleration is determined by the mass and 

the resultant force.

A resultant external torque on an extended object 

causes rotational acceleration. The value of the 

angular acceleration is determined by the moment 

of inertia and the resultant torque.

Newton’s second law F = m a Γ = I α
Work done W = F s W = Γ θ

Kinetic energy E
K
 =  ​ 1 _ 

2
 ​  m v2 ​E​

​K​
rot

​
​ = ​ 1 _ 

2
 ​ I ω2

Power P = F v P = Γ ω
Momentum p = m v L = I ω
Conservation of momentum The total linear momentum of a system 

remains constant provided no resultant 

external force acts.

The total angular momentum of a system remains 

constant provided no resultant external torque 

acts.

Symbols used Resultant force	 F

Mass	 m

Acceleration	 a

Displacement	 s

Velocity	 v

Linear momentum	 p

Resultant torque	 Γ

Moment of inertia	 I

Angular acceleration	 α

Angular displacement	 θ

Angular velocity	 ω

Angular momentum	 L

PROBLEM SOLVING AND GRAPHICAL WORK
When analysing any rotational situation, the simplest 

approach is to imagine the equivalent linear situation and use 

the appropriate equivalent relationships.

a)	 Graph of angular displacement vs time

This graph is equivalent to a graph of linear displacement vs 

time. In the linear situation, the area under the graph does 

not represent any useful quantity and the gradient of the line 

at any instant is equal to the instantaneous velocity (see page 

10). Thus the gradient of an angular displacement vs 
time graph gives the instantaneous angular velocity.

b)	 Graph of angular velocity vs time

This graph is equivalent to a graph of linear velocity vs 

time. In the linear situation, the area under the graph 

represents the distance gone and the gradient of the line at 

any instant is equal to the instantaneous acceleration (see 

page 10). Thus the area under an angular velocity vs 
time graph gives the total angular displacement and 
the gradient of an angular velocity vs time graph 
gives the instantaneous angular acceleration.

c)	 Graph of torque vs time

This graph is equivalent to a graph of force vs time. In 

the linear situation, the area under the graph represents 

the total impulse given to the object which is equal to the 

change of momentum of the object (see page 23). Thus 
the area under the torque vs time graph represents 
the total angular impulse given to the object which 
is equal to the change of angular momentum.

EXAMPLE
A solid cylinder, initially at rest, rolls down a 2.0 m long slope 

of angle 30° as shown in the diagram below: 

2.0 m

30°

The mass of the cylinder is m and the radius of the cylinder is R. 

Calculate the velocity of the cylinder at the bottom of the slope.

Answer: 

Vertical height fallen by cylinder = 2.0 sin30 = 1.0 m

	 PE lost = mgh

	 KE gained =  ​ 1 _ 
2
 ​ mv2 + ​ 1 _ 

2
 ​ Iω2

	 but  I =  ​ 1 _ 
2
 ​ mR2    (cylinder) see page 156

	 and ω =  ​ v _ 
R

 ​

	 ⇒  KE gained =  ​ 1 _ 
2
 ​ mv2 + ​ 1 _ 

2
 ​  ​ mR2

 _ 
2
 ​  · ​ v

2

 _ 
R2

 ​

	 =  ​ 1 _ 
2
 ​ mv2 +  ​ 1 _ 

4
 ​ mv2

	 = ​ 3 _ 
4
 ​ mv2

Conservation of energy

	 ⇒  mgh =  ​ 3 _ 
4
 ​ mv2

	 ∴  v =  ​√
____

 4​ 
gh

 _ 
3

 ​ ​

	 =  ​√
___________

  ​ 4 × 9.8 × 1.0  __ 
3
 ​ ​

	 = 3.61 m s-1

Solving rotational problems
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DEFINITIONS
Historically, the study of the behaviour of ideal gases led to some very fundamental concepts that are applicable to many other 

situations. These laws, otherwise known as the laws of thermodynamics, provide the modern physicist with a set of very 

powerful intellectual tools. 

The terms used need to be explained. 

Thermodynamic 
system

Most of the time when studying the behaviour of an ideal gas in particular situations, we focus on the 
macroscopic behaviour of the gas as a whole. In terms of work and energy, the gas can gain or lose 

thermal energy and it can do work or work can be done on it. In this context, the gas can be seen as a 

thermodynamic system.

The 
surroundings

If we are focusing our study on the behaviour of an ideal gas, then everything else can be called 

its surroundings. For example the expansion of a gas means that work is done by the gas on the 

surroundings (see below).

Heat Q In this context heat refers to the transfer  

of a quantity of thermal energy between  

the system and its surroundings.  

This transfer must be as a result of a  

temperature difference.

Work W In this context, work refers to the macroscopic transfer of energy. For example

1.  work done = force × distance

compression

F

F

heater

power supply
When a gas is compressed, work is done on the gas 

When a gas is compressed, the surroundings do 

work on it. When a gas expands it does work on 

the surroundings.

2.  work done = potential difference × current × time

Internal energy 
U (∆U = change 

in internal 

energy)

The internal energy can be thought of as the energy held within a system. It is the sum of the PE due to 

the intermolecular forces and the kinetic energy due to the random motion of the molecules. See  

page 26. 

This is different to the total energy of  

the system, which would also include  

the overall motion of the system and  

any PE due to external forces.

In thermodynamics, it is the changes  

in internal energy that are being  

considered. If the internal energy of  

a gas is increased, then its temperature  

must increase. A change of phase  

(e.g. liquid → gas) also involves a  

change of internal energy.

Internal energy 
of an ideal 
monatomic gas

The internal energy of an ideal gas depends only on temperature.  When the temperature of an ideal 

gas changes from T to (T + ΔT) its internal energy changes from U to (U + ΔU). The same ΔU always 

produces the same ΔT. Since the temperature is related to the average kinetic energy per molecule (see 

page 30), ​
__

 E
K
​ = ​ 3 __ 2 ​ k

B
T = ​ 3 __ 2 ​ ​ R __ N

A

 ​ T, the internal energy U, is the sum of the total random kinetic energies of the 

molecules:

U = nN
A
 ​
__

 E
K
​ =  ​ 3 _ 

2
 ​ nRT    [n = number of moles; N

A
 = Avogadro’s constant]

The total energy of a system is not the same as 

its internal energy

system
with

internal
energy U

v velocity (system also has kinetic energy)

height (system also has 
gravitational potential energy)

h

Thermodynamic systems and concepts

This is just another 

example of work being 

done on the gas.

compression

F

F

heater

power supply

HOT

HOT

thermal energy �ow

thermal energy �ow

thermal 
energy 
�ow

COLDHOT
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WORK DONE DURING EXPANSION 
AT CONSTANT PRESSURE
Whenever a gas expands, it is doing 

work on its surroundings. If the pressure 

of the gas is changing all the time, then 

calculating the amount of work done 

is complex. This is because we cannot 

assume a constant force in the equation 

of work done (work done = force 

× distance). If the pressure changes 

then the force must also change. If the 

pressure is constant then the force is 

constant and we can calculate the  

work done.

constant 
pressure p

F

F

∆x

Work done W = force × distance

	 = F∆x 

Since pressure =  ​ force _ area ​

	 F = pA

therefore

	 W = pA∆x

	 but A∆x = ∆V

	 so work done = p∆V 

So if a gas increases its volume (∆V  

is positive) then the gas does work (W is 

positive)

Work done by an ideal gas

p V DIAGRAMS AND WORK DONE
It is often useful to represent the changes that happen to a gas during a 

thermodynamic process on a pV diagram. An important reason for choosing to do this 

is that the area under the graph represents the work done. The reasons for this are 

shown below.

area under graph
    = work done in expanding 
          from state A to state B

pr
es

su
re

 p

p

volume V

A B area of strip
    = p∆V
    = work done 
          in expansion

∆V

This turns out to be generally true for any thermodynamic process.

pr
es

su
re

 p

volume V

A

B

C

work done by gas 
expanding from 
state A to state B 
to state C

  

A

D

C

work done by 
atmosphere as 
gas contracts 
from state C to 
state D to state A

pr
es

su
re

 p

volume V
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The first law of thermodynamics
FIRST LAW OF THERMODYNAMICS
There are three fundamental laws of thermodynamics. The 

first law is simply a statement of the principle of energy 

conservation as applied to the system. If an amount of thermal 

energy Q is given to a system, then one of two things must 

happen (or a combination of both). The system can increase its 

internal energy ∆U or it can do work W.

As energy is conserved

Q = ∆U + W

It is important to remember what the signs of these symbols 

mean. They are all taken from the system’s ‘point of view’.

Q	� If this is positive, then thermal energy is going into the 

system. 

If it is negative, then thermal energy is going out of the 

system.

∆U	� If this is positive, then the internal energy of the system 

is increasing. (The temperature of the gas is increasing.) 

If it is negative, the internal energy of the system is 

decreasing.(The temperature of the gas is decreasing.)

W	� If this is positive, then the system is doing work on 

the surroundings.(The gas is expanding.) 

If it is negative, the surroundings are doing work on 

the system. (The gas is contracting.)

EXAMPLE
A monatomic gas doubles its volume as a result of an 

adiabatic expansion. What is the change in pressure?

	 p
1
​​V​

1
​​​ 
5 _ 
3

 ​​ = p
2
​​V​

2
​​​ 
5 _ 
3

 ​​

	​ 
p

2 _ p
1
 ​ = ​​(​ V1 _ 

V
2

 ​)​​​ 5 _ 
3

 ​

​

	 = ​0.5​​ 
5 _ 
3

 ​​

	 = 0.31

∴	 final pressure = 31% of initial pressure

IDEAL GAS PROCESSES
A gas can undergo any number of different types of change or process. Four important processes are considered below. In each case 

the changes can be represented on a pressure–volume diagram and the first law of thermodynamics must apply. To be precise, these 

diagrams represent a type of process called a reversible process.

1.	 	Isochoric 
(isovolumetric)

In an isochoric 

process, also called an 

isovolumetric process, 

the gas has a constant 

volume. The diagram 

below shows an 

isochoric decrease in 

pressure.

pr
es

su
re

 p

volume V

A

B

Isochoric (volumetric) 

change

V = constant, or   

​ 
p
 _ 

T
 ​  = constant

Q  negative 

∆U  negative (T↓)

W  zero 

2.	 Isobaric

In an isobaric process 

the gas has a constant 

pressure. The diagram 

below shows an isobaric 
expansion.

A B

pr
es

su
re

 p

volume V

Isobaric change

p = constant, or   

​ V _ 
T

 ​  = constant

Q  positive

∆U  positive (T ↑)

W  positive

3.	 Isothermal

In an isothermal process 

the gas has a constant 

temperature. The 

diagram below shows an 

isothermal expansion.

A

B

pr
es

su
re

 p

volume V

Isothermal change

T = constant, or  

pV = constant

Q  positive

∆U  zero

W  positive

4.	 Adiabatic

In an adiabatic process 

there is no thermal 

energy transfer between 

the gas and the 

surroundings. This means 

that if the gas does work it 

must result in a decrease 

in internal energy. A rapid 

compression or expansion 

is approximately 

adiabatic. This is because 

done quickly there is not 

sufficient time for thermal 

energy to be exchanged 

with the surroundings. 

The diagram below shows 

an adiabatic expansion.

A

B

pr
es

su
re

 p

volume V

Adiabatic change

Q  zero

∆U  negative (T↓)

W  positive

For a monatomic gas, the 

equation for an adiabatic 

process is  

​pV​​ 
5 _ 
3

 ​​ = constant
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EXAMPLES
The first and second laws of thermodynamics both must apply  

to all situations. Local decreases of entropy are possible so  

long as elsewhere there is a corresponding increase.

1.	 A refrigerator is an example of a heat pump. 

source of work 
is the electric 
energy supply

thermal energy taken from 
ice box and ejected to 
surroundings

A refrigerator

2.	 It should be possible to design a 

theoretical system for propelling a 

boat based around a heat engine. The 

atmosphere could be used as the hot 

reservoir and cold water from the sea 

could be used as the cold reservoir. 

The movement of the boat through 

the water would be the work done. 

This is possible BUT it cannot continue 

to work for ever. The sea would be 

warmed and the atmosphere would 

be cooled and eventually there would 

be no temperature difference.

3.	 Water freezes at 0 °C because this is the temperature at 

which the entropy increase of the surroundings (when 

receiving the latent heat) equals the entropy decrease of 

the water molecules becoming more ordered. It would not 

freeze at a higher temperature because this would mean 

that the overall entropy of the system would decrease.

Second law of thermodynamics and entropy
SECOND LAW OF THERMODYNAMICS
Historically the second law of thermodynamics has been 

stated in many different ways. All of these versions can be 

shown to be equivalent to one another. 

In principle there is nothing to stop the complete conversion 

of thermal energy into useful work. In practice, a gas can not 

continue to expand forever – the apparatus sets a physical 

limit. Thus the continuous conversion of thermal energy 
into work requires a cyclical process – a heat engine.

Thot
Qhot Qcold

Tcold

Carnot showed 
that Qhot > W.

In other words there 
must be thermal energy 
‘wasted’ to the cold reservoir.

W

This realization leads to possibly the simplest formulation 

of the second law of thermodynamics (the Kelvin–Planck 
formulation). 

No heat engine, operating in a cycle, can take in heat 
from its surroundings and totally convert it into work.

Other possible formulations include the following:

No heat pump can transfer thermal energy from a 
low-temperature reservoir to a high-temperature 
reservoir without work being done on it (Clausius).

Heat flows from hot objects to cold objects.

The concept of entropy leads to one final version of the 

second law.

The entropy of the Universe can never decrease.

ENTROPY AND ENERGY DEGRADATION
Entropy is a property that expresses the disorder in the 

system.

The details are not important but the entropy S of a system 

is linked to the number of possible arrangements W of the 

system. [S = k
B
 ln(W)]

Because molecules are in random motion, one would expect 

roughly equal numbers of gas molecules in each side of a 

container.

An arrangement 
like this 
is much 
more likely
than one like 
this.

The number of ways of arranging the molecules to get the 

set-up on the right is greater than the number of ways of 

arranging the molecules to get the set-up on the left. This 

means that the entropy of the system on the right is greater 

than the entropy of the system on the left. 

In any random process the amount of disorder will tend 

to increase. In other words, the total entropy will always 

increase. The entropy change ∆S is linked to the thermal 

energy change ∆Q and the temperature T. (∆S = ​ ∆Q
 ___ T  ​)

Thot

Thot

Tcold
∆Q

∆Q

thermal energy �ow

decrease of entropy = 
Tcold

∆Qincrease of entropy = 

When thermal energy flows from a hot object to a colder 

object, overall the total entropy has increased.

In many situations the idea of energy degradation is a useful 

concept. The more energy is shared out, the more degraded 

it becomes – it is harder to put it to use. For example, the 

internal energy that is ‘locked’ up in oil can be released when 

the oil is burned. In the end, all the energy released will be in 

the form of thermal energy – shared among many molecules. 

It is not feasible to get it back.

increasing temperature of surroundings

-2 °C 0 °C 2 °C

<

ICE
since

ICE/WATER 
MIX

since

WATER
since

entropy 
decrease 

of ice 
formation

entropy 
increase 

of 
surroundings

>
entropy 

decrease 
of ice 

formation

entropy 
increase 

of 
surroundings

=
entropy 

decrease 
of ice 

formation

entropy 
increase 

of 
surroundings
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HEAT ENGINES
A central concept in the study of thermodynamics is the heat 
engine. A heat engine is any device that uses a source of 

thermal energy in order to do work. It converts heat into work. 

The internal combustion engine in a car and the turbines that 

are used to generate electrical energy in a power station are 

both examples of heat engines. A block diagram representing a 

generalized heat engine is shown below.

Thot

HOT
reservoir

COLD
reservoir

Tcoldthermal
energy
Qhot

thermal
energy
Qcold

work
done W

ENGINE

Heat engine

In this context, the word reservoir is used to imply a constant 

temperature source (or sink) of thermal energy. Thermal energy can 

be taken from the hot reservoir without causing the temperature of 

the hot reservoir to change. Similarly thermal energy can be given to 

the cold reservoir without increasing its temperature.

An ideal gas can be used as a heat engine. The pV diagram right 

represents a simple example. The four-stage cycle returns the gas 

to its starting conditions, but the gas has done work. The area 

enclosed by the cycle represents the amount of work done. 

In order to do this, some thermal energy must have been 

taken from a hot reservoir (during the isovolumetric increase 

in pressure and the isobaric expansion). A different amount 

of thermal energy must have been ejected to a cold reservoir 

(during the isovolumetric decrease in pressure and the isobaric 

compression).

isovolumetric 
decrease in 
pressure

total work 
done by 
the gaspr

es
su

re
 p

isovolumetric 
increase in 
pressure

volume V
isobaric compression

isobaric expansionA B

C D

The thermal efficiency of a heat engine is defined as 

η =  ​  work done   ____    
(thermal energy taken from hot reservoir)

 ​

This is equivalent to 

η =  ​ 
rate of doing work

   ____    
(thermal power taken from hot reservoir)

 ​

η =  ​ useful work done  __  
energy input

 ​

The cycle of changes that results in a heat engine with the 

maximum possible efficiency is called the Carnot cycle.

HEAT PUMPS
A heat pump is a heat engine being run in reverse. A 

heat pump causes thermal energy to be moved from a cold 

reservoir to a hot reservoir. In order for this to be achieved, 

mechanical work must be done.

Thot

HOT
reservoir

COLD
reservoir

Tcold

thermal
energy
Qhot

thermal
energy
Qcold

input
work ∆W

HEAT
PUMP

Heat pump

Once again an ideal gas can be used as a heat pump. The 

thermodynamic processes can be exactly the same ones as were 

used in the heat engine, but the processes are all opposite. This 

time an anticlockwise circuit will represent the cycle of processes. 

pr
es

su
re

 p

isobaric expansion

isobaric compression

isovolumetric 
decrease in 
pressure

isovolumetric 
increase in 
pressure

A D

B C

total work 
done on 
the gas

volume V

CARNOT CYCLES AND CARNOT THEOREM
The Carnot cycle represents the cycle of processes for a 

theoretical heat engine with the maximum possible efficiency. 

Such an idealized engine is called a Carnot engine.

Qhot

Qcold

thermal energy 
given out

thermal energy taken in

area = work done 
                by gas during 
                Carnot cycle

A

D

B

C

pr
es

su
re

 p

volume V
Carnot cycle

It consists of an ideal gas undergoing the following processes.

•	 �Isothermal expansion (A → B)

•	 Adiabatic expansion (B → C)

•	 Isothermal compression (C → D)

•	 Adiabatic compression (D → A)

The temperatures of the hot and cold reservoirs fix the 

maximum possible efficiency that can be achieved. 

The efficiency of a Carnot engine can be shown to be

η
Carnot

 = 1 - ​ 
T

cold _ 
T

hot

 ​  (where T is in kelvin)

An engine operates at 300 °C and ejects heat to the surroundings 

at 20 °C. The maximum possible theoretical efficiency is

η
Carnot

 = 1 - ​ 293 _ 
573

 ​  = 0.49 = 49%

Heat engines and heat pumps
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DEFINITIONS OF DENSITY AND PRESSURE
The symbol representing density is the Greek letter rho, ρ. The 

average density of a substance is defined by the following equation:

 

ρ = ​ 
m _ 
V

 ​

average density mass

volume

•	 Density is a scalar quantity.

•	 The SI units of density are kg m-3.

•	 Densities can also be quoted in g cm-3 (see conversion factor 

below)

•	 The density of water is 1 g cm-3 = 1,000 kg m-3

Pressure at any point in a fluid (a gas or a liquid) is defined 

in terms of the force, ΔF, that acts normally (at 90°) to a 

small area, ΔA, that contains the point.

p =  ​ 
ΔF _ ΔA

 ​

pressure normal force

area

•	 Pressure is a scalar quantity – the force has a direction but 

the pressure does not. Pressure acts equally in all directions.

•	 The SI unit of pressure is N m-2 or pascals (Pa). 1 Pa = 1 N m-2

•	 Atmospheric pressure ≈ 105 Pa

•	 Absolute pressure is the actual pressure at a point in a 

fluid. Pressure gauges often record the difference between 

absolute pressure and atmospheric pressure. Thus if a 

difference pressure gauge gives a reading of 2 × 105 Pa for a 

gas, the absolute pressure of the gas is 3 × 105 Pa.

VARIATION OF FLUID PRESSURE
The pressure in a fluid increases with depth. If two points are 

separated by a vertical distance, d, in a fluid of constant density, 

ρ
f 
, then the pressure difference, Δp, between these two points is:

∆p = ρ
f 
gd

pressure difference due to depth

density of fluid gravitational field strength

depth

The total pressure at a given depth in a liquid is the addition 

of the pressure acting at the surface (atmospheric pressure) 

and the additional pressure due to the depth:

P = P
0 
+ ρ

f 
gd

Total pressure gravitational field strength

depth
Atmospheric pressure density of fluid

Note that:

•	 Pressure can be expressed in terms of the equivalent 

depth (or head) in a known liquid. Atmospheric pressure 

is approximately the same as exerted by a 760 mm high 

column of mercury (Hg) or a 10 m column of water.

•	 As pressure is dependent on depth, the pressures at two 

points that are at the same horizontal level in the same 

liquid must be the same provided they are connected by 

that liquid and the liquid is static.

hexcess gas
pressure P A B

atmospheric pressure

the water column exerts
a pressure at B equal to
the excess pressure of
the gas supply: P = hρg

•	 The pressure is independent of the cross-sectional area – 

this means that liquids will always find their own level.

BUOYANCY AND ARCHIMEDES’ PRINCIPLE
Archimedes’ principle states that when a body is immersed 

in a fluid, it experiences a buoyancy upthrust equal in 

magnitude to the weight of the fluid displaced. B = ρ
f
V

f  
g

22N

(a)

12N

volume of
�uid displaced

(w = 10N)

density
of �uid

W

17N

volume of
�uid displaced

(w = 5N)

W W

B1 B2

A consequence of this 

principle is that a floating 

object displaces its own 

weight of fluid.

weight of �uid displaced
= total weight of duck

Fluids at restHL

PASCAL’S PRINCIPLE
Pascal’s principle states that the pressure applied to an 

enclosed liquid is transmitted to every part of the liquid, 

whatever the shape it takes. This principle is central to the 

design of many hydraulic systems and is different to how 

solids respond to forces.

When a solid object (e.g. an incompressible stick) is pushed at 

one end and its other end is held in place, then the same force 

will be exerted on the restraining object.

Incompressible solids transmit forces whereas incompressible 
liquids transmit pressures.

piston of 
area A1

hydraulic liquid

piston of area A2

load platform

applied force F
(e�ort)load = F × A2

A1

HYDROSTATIC EQUILIBRIUM
A fluid is in hydrostatic equilibrium when it is at rest. This 

happens when all the forces on a given volume of fluid are 

balanced. Typically external forces (e.g. gravity) are balanced 

by a pressure gradient across the volume of fluid (pressure 

increases with depth – see above). 

volume of �uid

downward force due to
pressure from �uid above

weight of �uid
contained in volume

upward force due to
pressure from �uid below

W
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THE IDEAL FLUID
In most real situations, fluid flow is extremely complicated. The 

following properties define an ideal fluid that can be used to 

create a simple model. This simple model can be later refined to 

be more realistic.

An ideal fluid:

•	 Is incompressible – thus its density will be constant.

•	 Is non-viscous – as a result of fluid flow, no energy gets 

converted into thermal energy. See page 167 for the definition 

of the viscosity of a real fluid.

•	 Involves a steady flow (as opposed to a turbulent, or chaotic, 

flow) of fluid. Under these conditions the flow is laminar (see 

box below). See page 167 for an analysis of turbulent flow.

•	 Does not have angular momentum – it does not rotate.

THE BERNOULLI EFFECT
When a fluid flows into a narrow section of a pipe:

•	 The fluid must end up moving at a higher speed (continuity 

equation).   

•	 This means the fluid must have been accelerated 

forwards.  

higher pressure
lower speed

higher pressure
lower speed

lower pressure
higher speed

•	 This means there must be a pressure difference forwards with 

a lower pressure in the narrow section and a higher pressure 

in the wider section.  

Thus an increase in fluid speed must be associated with a 

decrease in fluid pressure. This is the Bernoulli effect – the 

greater the speed, the lower the pressure and vice versa. 

THE BERNOULLI EQUATION
The Bernoulli equation results from a consideration of the 

work done and the conservation of energy when an ideal fluid 

changes:

•	 its speed (as a result of a change in cross-sectional area) 

•	 its vertical height as a result of work done by the fluid pressure.

The equation identifies a quantity that is always constant 

along any given streamline: 

density 
of fluid

density 
of fluid

gravitational 
field strength

vertical heightspeed of fluid 
particles fluid pressure  

​ 
1 _ 

2
 ​ ρv2 + ρgz + p = constant

Note that:

•	 The first term (​ 1 __ 2 ​ ρv2 ), can be thought of as the dynamic pressure. 

•	 The last two terms (ρgz + p), can be thought of as the static 

pressure.

•	 Each term in the equation has several possible units:  

   N m-2, Pa, J m-3.  

•	 The last of the above units leads to a new interpretation for 

the Bernoulli equation:

KE  

per unit 

volume

gravitational PE  

per unit  

volume

+  pressure = constant+

LAMINAR FLOW, STREAMLINES AND THE  
CONTINUITY EQUATION
When the flow of a liquid is steady or laminar, different parts 

of the fluid can have different instantaneous velocities.  The 

flow is said to be laminar if every particle that passes through 

a given point has the same velocity whenever the observation 

is made.  The opposite of laminar flow, turbulent flow, takes 

place when the particles that pass through a given point have a 

wide variation of velocities depending on the instant when the 

observation is made (see page 167).  

A streamline is the path taken by a particle in the fluid and 

laminar flow means that all particles that pass through a 

given point in the fluid must follow the same streamline.  The 

direction of the tangent to a streamline gives the direction of 

the instantaneous velocity that the particles of the fluid have at 

that point. No fluid ever crosses a streamline.  Thus a collection 

of streamlines can together define a tube of flow.  This is 

tubular region of fluid where fluid only enters and leaves the 

tube through its ends and never through its sides.

speed ν1

speed ν2

area A2
density ρ2

area A1
density ρ1 boundary

(streamlines)

In a time Δt, the mass, m
1
, entering the cross-section A

1
 is 

m
1 
= ρ

1
A

1
v

1
∆t

Similarly the mass, m
2
, leaving the cross-section A

2
 is

m
2 
= ρ

2
A

2
v

2
∆t

Conservation of mass applies to this tube of flow, so

ρ
1
A

1
v

1 
= ρ

2
A

2
v

2

This is an ideal fluid and thus incompressible meaning ρ
1 
= ρ

2
, so

A
1
v

1 
= A

2
v

2
 or Av = constant

This is the continuity equation.

Fluids in motion – Bernoulli effectHL
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APPLICATIONS OF THE BERNOULLI EQUATION
a)	 Flow out of a container

h

A

B
arbitrary zero

streamlineliquid
density ρ

To calculate the speed of fluid flowing out of a container, we 

can apply Bernoulli’s equation to the streamline shown above.

At A, p = atmospheric and v = zero

At B, p = atmospheric and v = ?

​ 1 _ 
2
 ​ ρv2 + ρgz + p = constant

∴ 0 + hρg + p = ​ 1 _ 
2
 ​ ρv2 + 0 + p

v = ​√
___

 2gh ​

b)	 Venturi tubes

A Venturi meter allows the rate of flow of a fluid to be 

calculated from a measurement of pressure difference 

between two different cross-sectional areas of a pipe.

�h

area A constriction
of area a

manometer liquid
(e.g. mercury),
density ρ2

�ow of (e.g.) water,
density ρ1

A

B

ν

to metal end

•	 The pressure difference between A and B can be 

calculated by taking readings of Δh and ρ
2
 from the 

attached manometer:

	 P
A 
- P

B 
= ∆hρ

2 
g

•	 This value and measurements of A, a and ρ
1
 allows the 

fluid speed at A to be calculated by using Bernoulli’s 

equation and the equation of continuity

v = ​ √  ​ 
2∆hρ

2  
g
 ________ 

​[ ρ1
​​(​ A __ a ​)​​2​ - 1 ]​

 ​ ​

•	 The rate of flow of fluid through the pipe is equal to A × v

c)	 Fragrance spray

below-pressure zone

a.  Squeezing
      bulb
      forces air
      through
      tube

b.  Constriction in tube causes low pressure
      region as air travels faster in this section

c.  Liquid is drawn up tube
      by pressure di�erence
      and forms little droplets
      as it enters the air jet
d.  Fine spray of fragrance
      is emitted from nozzle

squeeze-
bulb

d)	 Pitot tube to determine the speed of a plane

A pitot tube is attached facing forward on a plane. It has 

two separate tubes: 

small static
pressure openings

impact
opening static

pressure
tube

total
pressure
tube

direction
of air�ow

•	 The front hole (impact opening) is placed in the 

airstream and measures the total pressure (sometimes 

called the stagnation pressure), P
T
. 

•	 The side hole(s) measures the static pressure, P
s
. 

•	 The difference between P
T
 and P

s
, is the dynamic 

pressure. The Bernoulli equation can be used to calculate 

airspeed:

P
T 
- P

s 
= ​ 1 _ 

2
 ​ ρv2

v = ​√
________

 ​ 
2(P

T 
- P

s
)
 _ ρ ​ ​

e)	 Aerofoil (aka airfoil)

air �ow

aerofoil

pressure P2

pressure P1

dynamic lift F

ν1

ν2

Note that:

•	 Streamlines closer together above the aerofoil imply a 

decrease in cross-sectional area of equivalent tubes of flow 

above the aerofoil. 

•	 Decrease in cross-sectional area of tube of flow implies 

increased velocity of flow above the aerofoil (equation of 

continuity). v
1 
> v

2

•	 Since v
1 
> v

2
,  P

1 
< P

2

•	 Bernoulli equation can be used to calculate the pressure 

different (height difference not relevant) which can support 

the weight of the aeroplane.

•	 When angle of attack is too great, the flow over the upper 

surface can become turbulent. This reduces the pressure 

difference and leads to the plane ‘stalling’.

Bernoulli – examplesHL
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DEFINITION OF VISCOSITY
An ideal fluid does not resist the relative motion between 

different layers of fluid. As a result there is no conversion of work 

into thermal energy during laminar flow and no external forces 

are needed to maintain a steady rate of flow. Ideal fluids are non-

viscous whereas real fluids are viscous. In a viscous fluid, a steady 

external force is needed to maintain a steady rate of flow (no 

acceleration). Viscosity is an internal friction between different 

layers of a fluid which are moving with different velocities.

The definition of the viscosity of a fluid, η, (Greek letter Nu) is 

in terms of two new quantities, the tangential stress, τ, and 

the velocity gradient, ​ Δv
 ___ Δy
 ​  (see RH side).

The coefficient of viscosity η is defined as: 

η =  ​ 
tangential stress

  __  
velocity gradient

 ​  =  ​  F⁄A _ 
Δv⁄Δy

 ​

•	 The units of η are N s m-2 or kg m-1 s-1 or Pa s

•	 Typical values at room temperature:

◊	 Water: 1.0 × 10-3 Pa s

◊	 Thick syrup: 1.0 × 102 Pa s

•	 Viscosity is very sensitive to changes of temperature.

For a class of fluid, called Newtonian fluids, experimental 

measurements show that tangential stress is proportional to velocity 

gradient (e.g. many pure liquids). For these fluids the coefficient of 

viscosity is constant provided external conditions remain constant.

A) Tangential stress

relative
velocity ∆v

retarding force
accelerating force

area of contact A

-F
F

The tangential stress is defined as:

τ = ​ F _ 
A

 ​

•	 Units of tangential stress are N m-2 or Pa

B) Velocity gradient

y

(v + �v)
�v

�y
v

velocity

The velocity gradient is defined as: 

velocity gradient = ​ Δv _ 
Δy

 ​

•	 Units of velocity gradient are s-1 

STOKES’ LAW
Stokes’ law predicts the viscous drag force F

D
 that acts on a 

perfect sphere when it moves through a fluid:

-FF
v

r
driving
force

equal opposing
viscous drag

in�nite expanse
of �uid η

�uid at this point moves
with body (boundary layer)

sphere has
uniform
velocity

F
D 
= 6πη rv

Drag force acting on sphere in N

radius of sphere in m

viscosity of fluid in Pa s

velocity of sphere in m s-1

Note Stokes’ law assumes that:

•	 The speed of the sphere is small so that:

◊	 the flow of fluid past the sphere is streamlined

◊	 there is no slipping between the fluid and the sphere

•	 The fluid is infinite in volume.  Real spheres falling through 

columns of fluid can be affected by the proximity of the 

walls of the container.

•	 The size of the particles of the fluid is very much smaller 

than the size of the sphere.

The forces on a sphere falling through a fluid at terminal 

velocity are as shown below:

v

W

U FD

sphere
velocity

�uid upthrust

sphere
density ρ

�uid
density σ

pull of
Earth

viscous drag

r

At terminal velocity v
t
, 

W = U + F
D

F
D 
= U - W

6πηrv
t 
= ​ 4 _ 

3
 ​ πr3(ρ - σ)g

∴ v
t 
= ​ 

2r2(ρ - σ)g
 __ 

9η ​

TURBULENT FLOW – THE REYNOLDS NUMBER
Streamline flow only occurs at low fluid flow rates.  At high 

flow rates the flow becomes turbulent:

turbulentlaminar

It is extremely difficult to predict the exact conditions when 

fluid flow becomes turbulent.  When considering fluid flow 

down a pipe, a useful number to consider is the Reynolds 

number, R, which is defined as:

R = ​ 
vrρ
 _ η  ​

Reynolds 

number

viscosity of fluid

speed of 

bulk flow radius of pipe

density of fluid

Note that:

•	 The Reynolds number does not have any units – it is just a ratio.

•	 Experimentally, fluid flow is often laminar when R < 1000 and 

turbulent when R > 2000 but precise predictions are difficult.

ViscosityHL
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DAMPING
Damping involves a frictional force that is always in the 

opposite direction to the direction of motion of an oscillating 

particle. As the particle oscillates, it does work against this 

resistive (or dissipative) force and so the particle loses  

energy. As the total energy of the particle is proportional to the 

(amplitude)2 of the SHM, the amplitude decreases exponentially 

with time.

time, tπ
ω

2π
ω

4π
ω

di
sp

la
ce

m
en

t, 
x

exponential envelope

The above example shows the effect of light damping (the 

system is said to be underdamped) where the resistive force 

is small so a small fraction of the total energy is removed each 

cycle. The time period of the oscillations is not affected and the 

oscillations continue for a significant number of cycles. The time 

taken for the oscillations to ‘die out’ can be long. 

Heavy damping or overdamping involves large resistive 

forces (e.g. the SHM taking place in a viscous liquid) and can 

completely prevent the oscillations from taking place. The time 

taken for the particle to return to zero displacement can again 

be long. 

Critical damping involves an intermediate value for resistive 

force such that the time taken for the particle to return to zero 

displacement is a minimum. Effectively there is no ‘overshoot’. 

Examples of critically damped systems include electric meters 

with moving pointers and door closing mechanisms.

0.40.2 0.6 1.00.8 1.2 1.4 1.6

overdamped

overshoot

underdamped

critical
damping

time
di

sp
la
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m
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t

NATURAL FREQUENCY AND RESONANCE
If a system is temporarily displaced from its equilibrium 

position, the system will oscillate as a result. This oscillation will 

be at the natural frequency of vibration of the system. For 

example, if you tap the rim of a wine glass with a knife, it will 

oscillate and you can hear a note for a short while. Complex 

systems tend to have many possible modes of vibration each 

with its own natural frequency.

It is also possible to force a system to oscillate at any frequency 

that we choose by subjecting it to a changing force that varies 

with the chosen frequency. This periodic driving force must be 

provided from outside the system. When this driving frequency 

is first applied, a combination of natural and forced oscillations 

take place which produces complex transient oscillations. Once 

the amplitude of the transient oscillations ‘die down’, a steady 

condition is achieved in which:

•	 The system oscillates at the driving frequency.

•	 The amplitude of the forced oscillations is fixed. Each cycle 

energy is dissipated as a result of damping and the driving 

force does work on the system. The overall result is that the 

energy of the system remains constant.

•	 The amplitude of the forced oscillations depends on:

◊	 �the comparative values of the natural frequency and the 

driving frequency

◊	 the amount of damping present in the system.

light damping

increased damping

natural frequency, fnatural

driving frequency, fdriving

am
pl

itu
de

 o
f o

sc
ill

at
io

n

heavy damping

Resonance occurs when a system is subject to an oscillating 

force at exactly the same frequency as the natural frequency of 

oscillation of the system.

Q FACTOR AND DAMPING
The degree of damping is measured by a quantity called the 

quality factor or Q factor.  It is a ratio (no units) and the 

definition is:

Q =  2π ​ 
energy stored

  __  
energy lost per cycle 

 ​

Since the energy stored is proportional to the square of 

amplitude of the oscillation, measurements of decreasing 

amplitude with time can be used to calculate the Q factor.  The 

Q factor is approximately equal to the number of oscillations 

that are completed before damping stops the oscillation.

Typical orders of magnitude for different Q-factors:

Car suspension:	 1

Simple pendulum:	 103

Guitar string:	 103

Excited atom:	 107

When a system is in resonance and its amplitude is constant, 

the energy provided by the driving frequency during one cycle 

is all used to overcome the resistive forces that cause damping. 

In this situation, the Q factor can be calculated as:

Q = 2π × resonant frequency × ​ 
energy stored

  __  
power loss

 ​  

Forced oscillations and resonance (1)HL



169o p t i o n  B  –  E n g i n ee  r i n g  P h y s i c s

Resonance (2)HL

PHASE OF FORCED OSCILLATIONS 
After transient oscillations have died down, the frequency of the forced oscillations equals the driving frequency. The phase 

relationship between these two oscillations is complex and depends on how close the driven system is to resonance:

0
in phase

heavy damping

light damping

natural
frequency

forcing
frequency

f/Hz

driven vibration
   period behind

phase lag
φ/rad

1
2π

π
2

driven vibration
   period behind1
4

EXAMPLES OF RESONANCE

Comment

Vibrations in machinery When in operation, the moving parts of machinery provide regular driving forces on the 

other sections of the machinery. If the driving frequency is equal to the natural frequency, the 

amplitude of a particular vibration may get dangerously high. e.g. at a particular engine speed 

a truck’s rear view mirror can be seen to vibrate.

Quartz oscillators A quartz crystal feels a force if placed in an electric field. When the field is removed, the 

crystal will oscillate. Appropriate electronics are added to generate an oscillating voltage from 

the mechanical movements of the crystal and this is used to drive the crystal at its own natural 

frequency. These devices provide accurate clocks for microprocessor systems.

Microwave generator Microwave ovens produce electromagnetic waves at a known frequency. The changing 

electric field is a driving force that causes all charges to oscillate. The driving frequency of the 

microwaves provides energy, which means that water molecules in particular are provided 

with kinetic energy – i.e. the temperature is increased.

Radio receivers Electrical circuits can be designed (using capacitors, resistors and inductors) that have their 

own natural frequency of electrical oscillations. The free charges (electrons) in an aerial will 

feel a driving force as a result of the frequency of the radio waves that it receives. Adjusting 

the components of the connected circuit allows its natural frequency to be adjusted to equal 

the driving frequency provided by a particular radio station. When the driving frequency 

equals the circuit’s natural frequency, the electrical oscillations will increase in amplitude and 

the chosen radio station’s signal will dominate the other stations.

Musical instruments Many musical instruments produce their sounds by arranging for a column of air or a string to 

be driven at its natural frequency which causes the amplitude of the oscillations to increase.

Greenhouse effect The natural frequency of oscillation of the molecules of greenhouse gases is in the infra-red 

region. Radiation emitted from the Earth can be readily absorbed by the greenhouse gases in 

the atmosphere. See page 92 for more details.
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IB Questions – option B – engineering physics
1.	 A sphere of mass m and radius r rolls, without slipping, from 

rest down an inclined plane.  When it reaches the base of the 

plane, it has fallen a vertical distance h. Show that the speed 

of the sphere, v, when it arrives at the base of the incline is 

given by:

v = ​√
_____

 ​ 
10gh

 _ 
7
 ​ ​	  [4]

2.	 A flywheel of moment of inertia 0.75 kg ​m​2​ is accelerated 

uniformly from rest to an angular speed of 8.2 rad ​s​−1​ in 6.5 s.

a)	 Calculate the resultant torque acting on the flywheel 

during this time.� [2]

b)	 Calculate the rotational kinetic energy of the flywheel 

when it rotates at 8.2 rad ​s​−1​� [2]

c)	 The radius of the flywheel is 15 cm.  A breaking force 

applied on the circumference and brings it to rest from 

an angular speed of 8.2 rad ​s​−1​  in exactly 2 revolutions. 

Calculate the value of the breaking force.� [2]

3.	 	A fixed mass of a gas undergoes various changes of 

temperature, pressure and volume such that it is taken round 

the p–V cycle shown in the diagram below.
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The following sequence of processes takes place during 

the cycle.

X → Y	� the gas expands at constant temperature and the gas 

absorbs energy from a reservoir and does 450 J of 

work.

Y → Z	� the gas is compressed and 800 J of thermal energy is 

transferred from the gas to a reservoir.

Z → X	� the gas returns to its initial stage by absorbing energy 

from a reservoir.

a)	 Is there a change in internal energy of the gas during  

the processes X → Y? Explain.� [2]

b)	 Is the energy absorbed by the gas during the process  

X → Y less than, equal to or more than 450 J? Explain.� [2]

c)	 Use the graph to determine the work done on the gas 

during the process Y → Z.� [3]

d)	What is the change in internal energy of the gas  

during the process Y → Z?� [2]

e)	 How much thermal energy is absorbed by the gas  

during the process Z → X? Explain your answer.� [2]

f)	 What quantity is represented by the area enclosed by  

the graph? Estimate its value.� [2]

g)	 The overall efficiency of a heat engine is defined as 

Efficiency = ​ 
net work done by the gas during a cycle

    ____    
total energy absorbed during a cycle

 ​

If this p–V cycle represents the cycle for a particular heat 

engine determine the efficiency of the heat engine.� [2]

4.	 In a diesel engine, air is initially at a pressure of 1 × ​10​5​ Pa 

and a temperature of 27 °C. The air undergoes the cycle of 

changes listed below. At the end of the cycle, the air is back at 

its starting conditions.

1	 An adiabatic compression to 1/20th of its original volume.

2	 A brief isobaric expansion to 1/10th of its original volume.

3	 An adiabatic expansion back to its original volume.

4	 A cooling down at constant volume.

a)	 Sketch, with labels, the cycle of changes that the gas 

undergoes. Accurate values are not required.� [3]

b)	 If the pressure after the adiabatic compression has risen 

to 6.6 × ​10​6​ Pa, calculate the temperature of the gas.� [2]

c)	 In which of the four processes:

(i)	 is work done on the gas?� [1]

(ii)	 is work done by the gas?� [1]

(iii)	does ignition of the air-fuel mixture take place?� [1]

d)	Explain how the 2nd law of thermodynamics applies  

to this cycle of changes.� [2]

HL

5.	 	With the aid of diagrams, explain

a)	 What is meant by laminar flow

b)	 The Bernoulli effect

c)	 Pascal’s principle

d)	An ideal fluid� [8]

6.	 Oil, of viscosity 0.35 Pa s and density 0.95 g ​cm​-3​, flows 

through a pipe of radius 20 cm at a velocity of 2.2 m ​s​-1​. 

Deduce whether the flow is laminar or turbulent.� [4]

7.	 A pendulum clock maintains a constant amplitude by means 

of an electric power supply. The following information is 

available for the pendulum:

Maximum kinetic energy:	 5 × 10-2 J

Frequency of oscillation:	 2 Hz

Q factor:	 30

Calculate:

a)	 The driving frequency of the power supply	 [3]

b)	 The power needed to drive the clock. 	 [3]




