
O X F O R D  I B  C O U R S E  P R E P A R A T I O N

F O R  I B  D I P LO M A 
C O U RS E  P R E PA R AT I O N

PHYSICS

David Homer



Introduction to the Diploma Programme  iv

1  Motion and force  
1.1 Faster and faster   1
1.2 Pushes and pulls   13
1.3 Work and energy   20
1.4 Momentum and impulse   28

2  Electric charge at work
2.1 Electric fields and currents  36
2.2 Electrical resistance   43
2.3 Magnetism at work  52
2.4 Electromagnetic induction    59
2.5 Practical aspects of electrical physics   65

3  Thermal physics
3.1 States of matter   71
3.2 Gas laws   79
3.3 Changing temperature and state   84

4  Waves
4.1 Waves in theory   92
4.2 Physics of light   102
4.3 Electromagnetic radiation   110
4.4 Physics of sound    112

5  Atomic physics and radioactivity
5.1 Inside the atom   121
5.2 Radioactive decay   124
5.3 Half-life  132
5.4 The Standard Model   136

6  Generating and using energy
6.1 Transferring thermal energy   142
6.2 Energy resources   146 

7  Tips and advice on successful learning
7.1 Approaches to your learning   163
7.2 Good study habits   163
7.3 Academic honesty   166
7.4 Understanding questions    166

Appendix  169
Index  173

iii

Contents

Answers to questions in this book can be found at www.oxfordsecondary.com/9780198423591



The main purpose of science is simplicity and as we understand more  
things, everything is becoming simpler.

Edward Teller, Conversations on the Dark Secrets of Physics (1991)“ ”

1.1 Faster and faster
There are two aspects of motion to study—how it is defined and 
measured, and how it can be changed. This first section looks at the 
basic definitions and how they are linked.

DP link
In the IB Physics Diploma 
Programme you will learn  
about units when you study  
1.1 Measurements in 
physics.
You will learn about distance 
and displacement in  
2.1 Motion.

1

 Chapter context

This chapter deals with how things move and introduces you to some 
important related concepts that extend throughout physics—in 
particular, the conservation of momentum.

 Learning objectives

In this chapter you will learn about:
➔    distance and displacement, speed and velocity, and acceleration

➔   displacement–time and velocity–time graphs

➔   the kinematic (suvat) equations

➔   forces and Newton’s three laws of motion

➔   the effects of friction

➔   work, energy and power

➔   conservation laws

➔   momentum and impulse.

Mass, length and time

All cultures measure the quantities used in everyday life, but they use many different units;  
for example, mass is measured in grams, ounces (to measure gold) and maunds (an Indian  
unit). Science uses a single agreed system of units that was established in 1960, though its 
development began well before that. It is called the SI (Système Internationale d’unités). Seven  
base units are defined as fundamental units. All other units are derived from these and are 
secondary units. 

The fundamental SI units used in this book, together with their abbreviation and quantity, are:

• mass: the kilogram (kg)

• length: the metre (m)

• time: the second (s)

• electric current: the ampère (A)

• amount of substance: the mole (mol)

• temperature: the kelvin (K)

A fundamental unit not used in the Physics Diploma Programme is the candela (cd), the unit of 
luminous intensity.

DP ready Nature of science

Motion and force1

Key terms introduced
➔ displacement 
➔ velocity
➔ acceleration
➔ force
➔ Newton’s laws of motion
➔ work done
➔ power
➔ momentum
➔ impulse 
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Distance and displacement
Imagine running round an athletic track. Figure 1 shows a map of the 
track. The total distance around the track on the inside lane is 400 m. 
When you have run halfway round, how far have you travelled?

Figure 1. Distance and displacement on a race track

One answer is 200 m—half the track length. This is the distance you 
have run. It is a measure of how much ground you have covered 
irrespective of direction. It is a scalar quantity.

But another way to look at it is that you are only 25 m away from 
your starting point and due north of where you began. This is your 
displacement, which is a vector quantity, and always requires a 
magnitude (the number part) and a direction (the start-to-finish 
information). 

Continue running back to the starting point. Your distance travelled is 
now 400 m but your displacement has become zero. 

Question
1 a) Calculate for your journey from home to school 

  i) your displacement (including direction)

  ii) your distance travelled.

 b)  Identify how your answers to (a) change for your journey 
going from school to home.

Q

Key term
Distance is the length of a 
path travelled between two 
points. It is a scalar quantity.

Displacement is the 
difference (in magnitude 
and direction) between an 
initial and final position. It is 
a vector quantity.

The units of distance and 
displacement are the  
metre (m).

A scalar quantity has only 
magnitude; a vector quantity 
has both magnitude and 
direction.

N

25 m due
north

200 m

Maths skills: Scalars and vectors 
You need to know how to manipulate scalars and vectors. Here are 
the ground rules:

Adding and subtracting: Scalars are numbers, and are added and 
subtracted like ordinary numbers. 

In adding or subtracting vectors you must take account of the 
direction as well as the size. The best way to see this is to begin 
with a scale drawing. Imagine that a boy cycles 3 km due north 
along a straight road and then 4 km along another road that goes 
due east (figure 2).

Internal link
Vectors and scalars occur in 
many topics, notably in the 
kinetic theory of gases  
(3.2 Gas laws).

DP link
In the IB Physics Diploma 
Programme, ideas about 
motion are studied in  
2.1 Motion, and vectors  
are studied in 1.3 Vectors 
and scalars.
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1   Motion and force

Figure 2

From figure 2, the total distance travelled is (3 + 4) = 7 km. What is 
the displacement? It is measured from the beginning of the journey, 
A, direct to the end of the journey, C. There are two ways to work 
this out.

One way is to use trigonometry. Compute the distance using 

Pythagoras’s theorem: 3 4 52 2+ =  km 

and compute the angle using tan
4
3

531θ = = °− . 

So the displacement is 5.0 km in a direction N 53°E. 

The other way is by scale drawing. Draw the first vector upwards 
(north), 3 cm long (using the scale 1 km ≡ 1 cm). At the top end 
of this vector (which shows where the boy was after the first leg 
of the journey) draw a second line. This should be 4 × 1 cm, that 
is, 4 cm long, and should go to the right. Use a protractor (or 
squared paper) to ensure that the angle between the vectors is 
90°. The displacement is the vector (called the resultant vector) 
that stretches from the start of the first vector to the end of the 
second vector. Measure it and it should be 5 cm long; use a 
protractor to check that the angle between the first vector and this 
resultant is 53°. 

To subtract vectors by scale drawing, treat the vector being 
subtracted as though it had the opposite direction to its actual 
direction. Then add this new (negative) vector to the other. 

The idea of adding a scalar to a vector in physics has no meaning. 
It is like adding an energy in joules to a velocity in metres per 
second.

Multiplying and dividing: Again, scalars are multiplied and divided 
just like ordinary numbers.

It is possible to multiply a vector by a scalar. The direction does not 
change, and the magnitude of the vector is multiplied by the scalar. 
A velocity of 10 m s–1 in a direction due east that is multiplied by 5 
becomes 50 m s–1 still in the direction due east.

There are two ways to multiply vectors together (called “dot” 
and “cross” products); you may meet them in the IB Mathematics 
Diploma Programme, but they will not be required in Physics.

Table 1. Examples of scalars 
and vectors

Examples 
of scalar 

quantities

Examples 
of vector 

quantities

mass weight

speed velocity

time acceleration

energy force 

power magnetic field 
strength

temperature electric current

Internal link
There are some notes on 
trigonometry at the end of 
1.2 Pushes and pulls.

B C

A

N

S

W E

θ

( (
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Average speed and velocity
We often need to know not just the length of our journey but also how 
quickly we travelled. To do this we define two quantities that mirror 
the distance and displacement quantities: these are speed and velocity. 
For the calculation of speed or velocity we often use the time average. 
Time here is the travel time between measuring the first position and 
the second position.

Worked example: Speed and velocity
1.  Look again at the running track shown in figure 1. If it takes 

you 40 s to run halfway round, you cover the distance with an 

average speed of 
200 m
40 s

 = 5.0 m s−1. But the average velocity  

is 
25 m
40 s

 = 0.63 m s−1 due north. 

WE

Maths skills: Significant figures, decimal places and  
standard form
The running track problem has its answers expressed to two 
significant figures (2 sf) because this was the smallest number of sf 
expressed in the data. Writing “200 m” implies that we know the 
value to the nearest metre, that is, 200 ± 1 m; this is 3 sf, whereas 
“40 s” implies that we know the time to the nearest second (2 sf). 

Never quote an answer to better than the smallest number of sf in the  
data. And be careful with rounding when you adjust the final answer.

Decimal places (dp) are often confused with significant figures: 
123.45 is a value quoted to 5 significant figures and 2 decimal places.

A good way to avoid being tripped up by sf and dp is to use 
standard form: 1.2345 × 103. When you deal with small or very 
large numbers such as the mass of a proton (1.67 × 10−23 kg to 3 sf), 
standard form is crucial.

Question
2  A teacher walks 5 m north, 2 m east, 5 m south and 2 m west. 

The whole journey takes 42 s. Calculate the teacher’s  
a) average speed b) average velocity.

3  Give two examples of a vector quantity and two examples of a 
scalar quantity.

DP link
You will learn about 
significant figures and their 
treatment when you study 
1.2 Uncertainties and 
errors.

Q

Instantaneous speed and velocity: distance–time graphs
Car drivers realize that an important fact about a car journey is not 
necessarily the average speed, but the speed that a roadside camera 
records! This is known as the instantaneous speed, the speed at one 
moment in time. For a car, it is the speed indicated by the speedometer.

Graphs make it much easier to visualize speeds compared to data 
tables. To demonstrate, consider the data for the distance travelled by a 
car in a straight line during the first few seconds of a journey in table 2. 
These data could be laboriously transformed into a set of average 
speeds by working out the distance travelled between successive pairs 
and dividing by the time between them, but plotting the graph from the 
distance–time data shows details of the motion straight away.  

Key term
average speed 

= totaldistance travelled
total time taken  

average velocity

=
changein displacement

time taken

The units of speed and 
velocity magnitude are 
metres per second (m s−1; 
it is not usual to write m/s 
even though you might 
have done so in earlier 
study). Speed is a scalar 
quantity; velocity is a vector 
and always needs both 
magnitude and direction.

Table 2. 

Time (s) Distance from 
start (m)

0 0
1 2
3 16
5 44
7 86
9 142

11 205
13 275
15 345
17 415
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1   Motion and force

Figure 3 shows the data plotted as a graph of distance (y-axis) against 
time (x-axis) with the best-fit curve drawn. 

The car moves slowly at the start, so the gradient of the graph is small. 
As time goes on the speed increases (the graph is steeper) until it 
becomes constant (a straight line beyond 10 s). 

The instantaneous speed at a particular time can be determined from a 
distance–time graph by finding the gradient of the line at that time. 
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Figure 3. Distance–time data 
from table 2

Maths skills: Calculating a gradient
The technique below applies to finding the gradient of any graph at a 
point, whether a straight line or a curve. This example is a distance–
time graph, and we require the instantaneous speed at a time of 7.0 s. 

0 2 4 time / s

di
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8 10 12 14 16

Change in distance (y-axis) = 136 m

Change in time (x-axis) = 14.0 s

If the graph is a curve, draw a tangent to the line at 7.0 s (if the 
graph is a straight line then this step is not needed). The tangent 
line should be as long as possible. 

Read off the intercepts on the axes and work out the gradient from:
change in the y-direction

change in the x-direction
.

The values for this example are on the graph.

Treating this as an equation, you will see that the 

gradient  = 
change in distance / m

change in time / s
 = speed, measured in m s–1  

= 9.7, measured in m s−1.

Always quote the quantity and the unit in the final answer for a 
gradient (so 9.7 m s–1).
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Acceleration: speed–time graphs
The final quantity used to describe motion is acceleration. This is a 
measure of the rate at which velocity changes. The word “rate” is 
another way to say “change in [quantity] per unit time”. 

Table 3 gives data of the speed every second for a car that moves from 
rest. After one second the car goes from 0 to 1.5 m s–1 so the change in 
speed in the first second is 1.5 m s−1. 

In the time from 1 s to 2 s the change in speed is again 1.5 m s−1  
(= 3.0 − 1.5). 

In the third second (2 s to 3 s), the speed change is (4.5 − 3.0), still 
1.5 m s−1. 

So for this journey, in every second of the motion, the speed increases 
by 1.5 m s−1. The change in speed is 1.5 m s−1 per second; this is an 
acceleration of 1.5 (m s−1) s−1, written as 1.5 m s−2.

Acceleration is a vector quantity (with direction), though you will 
not always know a direction. If in doubt as to what is needed, always 
assume it is a vector and quote a direction if possible.

Again, there is a distinction between average acceleration (the 
change in speed each second over a definite time interval) and the 
instantaneous acceleration (the change in speed each second at 
one instant in time). And again, a graph shows these distinctions 
(figure 4).

First, look at the overall shape of the graph and see what it shows: the 
object starts at rest (meaning it has zero speed at zero time). Then the 
speed increases steadily for the first 4.8 s. The gradient of this straight 
line (region OA) gives the acceleration. From 4.8 s to 8.0 s (region AB) 
the speed does not change; the gradient of the graph, and therefore the 
acceleration, is zero. From 8.0 s to 12.0 s the speed is decreasing, so 
the acceleration now has a negative value. 

One term often used to describe a decrease in speed is “deceleration”. 
Take some care with this: it is better to call the quantity “acceleration” 
and then to use a minus sign to make it clear that the gradient of the 
velocity–time graph (and therefore the acceleration) is negative.

Key term
acceleration

=
changein velocity

time taken for change 
The unit of acceleration 
is m s−2, which is the 

equivalent of  
( )−m s

s

1

.

Table 3. 

Time (s) Speed  
(m s–1)

0.0 0.0
1.0 1.5
2.0 3.0
3.0 4.5
4.0 6.0

Question
4  The distance–time graphs below show the motion of three 

objects, A, B and C.

 Describe the motion of the objects as fully as you can.

5  A car travels at a steady speed of 22 m s−1 for 20 minutes. Then 
the car goes a further distance of 35 km for 15 minutes.

 Calculate:

 a) the distance travelled in the first 20 minutes

 b) the average speed for the 35 minute journey.

Q
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Figure 4. Speed–time graph
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Speed–time graphs and distance travelled
There is more information to be gained from a speed–time graph such 
as figure 4. 

As discussed before, the quantities speed and time give acceleration 

from 
speed

time
. But notice that the definition for speed can be rearranged 

to give distance = speed × time. The quantity (speed × time) represents 
the area under a speed–time graph. We can work out the distance 
travelled for part or all of a journey by calculating the area under the line 
for the speed–time graph. The units for speed × time are (m s−1) × (s). 
The units of seconds cancel, leaving only metres, as you should expect.

Maths skills: Estimating the area under a speed–time graph
1.  Select the area for which you need to know the distance. 

Always calculate the area starting from the time axis (that 
is, from zero speed upwards). In the example in figure 5, 
this is particularly important for times between 8.0 s and 
12.0 s.

2.  Divide the area into easily calculated regions, either 
rectangles or right-angled triangles. In figure 5, two 
triangles and two rectangles do the job. When there is a 
curved line you may have to estimate the area (figure 6).

3.  Either count the squares in the grid (best for curves) or 
calculate the area (best for lines). Remember that the area 

of a triangle is 
1
2
 × base × height whereas a rectangle is 

base × height.

4.  Add together all the areas to get the total distance. 

Table 4. Area calculation for the speed–time graph in figure 5

Area Calculation Distance / m

W
1
2

 × (4.8 − 0) × 2.0  4.8

X (8.0 − 4.8) × 2.0  6.4

Y
1
2

 × (12.0 − 8.0) × (2.0 − 1.0)  2.0

Z (12.0 − 8.0) × 1.0  4.0

Total  17.2

In the example the total distance travelled is 17.2 m—
probably best expressed as 17 m to 2 sf.

If you cannot divide the area into regular shapes, then count the 
number of squares, as shown in figure 6.

There is a tick in every complete large square, and some ticks 
where incomplete squares are roughly equivalent to one large 
square, making about 19 squares altogether. An estimate to 
the nearest square is as good as you will be able to manage. 
Each square is 0.5 m s−1 by 2.0 s in area, in other words 
1.0 m. So, 19 m underneath the graph in total.
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Figure 5. Calculating area by the use 
of regular shapes
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Velocity–time graphs and displacement
A velocity–time graph can give even more information, this time 
including direction. Figure 7 shows a graph for a journey along a 
straight line (we need to know this, otherwise we cannot make some 
of the later deductions). As usual the gradients of the graph give the 
accelerations (also in the direction of motion). This time, however, the 
line goes below the x-axis. When it does so, the velocity is negative. 
This means that the object is now travelling back towards the starting 
point. The area is also negative and represents displacement back 
towards the starting position.

Worked example: Analysing velocity–time graphs
2. Analyse as much as you can of the motion for figure 7.

Time / s Analysis
0–10 Accelerating; acceleration is 0.40  m s−2; displacement is 

20  m in +ve (positive) direction
10–14 Slowing down to zero; acceleration is −1.0  m s−2; 

displacement is 8  m in +ve direction 
14–18 Stationary; no change in displacement
18–23 Accelerating but towards starting point; −1.4  m s−2 ; 

displacement is −17.5  m
23–26 Slowing down so accelerating in +ve direction; +2.3  m s−2 ; 

displacement is −10.5  m 
0–26 Displacement is +20 + 8 − 17.5 − 10.5 = 0  m so object 

arrives back at starting point

WE

Question
6 The graph shows the variation of speed with time for a car.
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 a) State the maximum speed of the car.

 b) Calculate the acceleration for 

  i) the first 20 s of the motion

  ii) the last 10 s of the motion.

 c)  Determine the distance travelled in the first 
40 s.

 d)  Determine the average speed for the whole 
journey.

7  A series of speed–time graphs are shown for four different journeys, A, B, C and D. 
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 a)  Compare the journeys of A and B in as much 
detail as you can.

 b) Describe journey C.

 c) Describe journey D.

Q
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Figure 7. Velocity–time graph
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Kinematic equations
Speed–time graphs are a good way to visualize motion, and to estimate 
acceleration and distance travelled. However, sometimes there is 
a better method for calculating either the speed or acceleration or 
distance travelled: the kinematic equations. These equations are 
sometimes called the suvat equations from the symbols used:

s distance travelled
u initial speed v final speed
a acceleration 
t time taken

To use these equations we assume that the acceleration is constant 
and does not change throughout the motion. The acceleration is said to 
be uniform when this is true.

DP link
You will learn about the 
kinematic (suvat) equations 
in 2.1 Motion.

The four kinematic equations make assumptions about the systems they describe. The most 
important is that the acceleration is constant. When this is not true, the equations are not valid 
(and you may be penalized in an examination for using them). An example is a skier moving down 
a hill with a varying slope. The acceleration down the slope will not be constant so the equations 
do not apply.

Another assumption is that we are dealing with point objects. We do not consider the mass or 
distribution of mass of the objects. 

These equations apply to translation only, not rotation (though they can be extended to rotation, as 
you will learn if you study Option B of the IB Diploma Physics Programme).

DP ready Nature of science

The speed–time graph below (figure 8) shows the change in speed of 
an object over time t. Compare the starting and finishing speeds with 
the list of symbols above. The graph is a straight line and, of course, 
this tells us that the acceleration is constant. The derivations for the 
four equations, related to the graph, are shown below. 

time
t0

0

u

v

sp
ee

d

areaΔ =      × (v − u) × t 1
2

gradient =  
(v − u)

t

area     = u × t 

Figure 8. Deriving the suvat equations

Equation 1

The acceleration is the gradient of the graph, so
( )
( )

= =
−
−

a
v u
t

acceleration,
change in speed

time for speed change 0

  =
−

= +a
v u

t
v u atand therefore .
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Equation 2

The distance travelled (area under the graph) can be evaluated as two 
areas: areaΔ and area□.

The total area, s (distance travelled), is  

areaΔ + area□ ( )= × − × + × = × × + ×v u t u t at t u t
1
2

1
2

  

(this also uses v = u + at rearranged as v − u = at)

which becomes s = ut + 
1
2

 at2.

Equation 3

Combine equations 1 and 2 and eliminate t to give v2 = u2 + 2as. 

Equation 4

Eliminate a from the others to give =
+

s
v u

t
2

. 

Worked example: Using the kinematic (suvat) equations
3.  A car accelerates uniformly along a straight road, taking 13 s to change its speed from 8.0 m s−1 

to 34 m s−1. Calculate

 a) the acceleration of the car

 b) the distance travelled by the car in the 13 s time period.

Solution

 a) Begin by writing down what you know and what is required.

  t = 13 s
  u = 8.0 m s−1

  v = 34 m s−1

  a = ?

  so a
v u

t
34 8

13
2.0 m s 2

( )
=

−
=

−
= −  

 b) = + = × + × × = + =s ut at
1
2

8 13
1
2

2 13 104 169 273 m2 2  

   As all the data are to 2 sf, the distance travelled is best given as 270 m.

4.  An aircraft lands on a runway, taking 920 m to stop from a landing speed of 45 m s−1.

 Calculate

 a) the time to stop

 b) the average deceleration.

Solution

 a) s = 920 m 
  u = 45 m s−1 
  v = 0 
  t = ?

   Equation 4 can be rearranged as t =
+

=
×
+

=
s

v u
2 2 920

0 45
 40.9 s or 41 s to 2 sf. 

 b) One route is to use v2 = u2 + 2as 

   So 02 = 452 + 2 × a × 920   (it is important to link the values to the symbols:  
452 = 02 + 2 × a × 920 is wrong)

   a = −
×

= −
2025

2 920
1.1 m s−2 to 2 sf   (notice the minus sign; it tells us that the aircraft is 

slowing down, so this is a deceleration)

WE

( (
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Question
8  A motorcyclist accelerates uniformly from rest to a speed of 45 m s−1 in 12 s. Then she brakes 

with a uniform deceleration to stop in a distance of 85 m.

 a) Calculate, for the first 12 s of the journey,

  i) the acceleration

  ii) the distance travelled.

 b) Calculate, for the second part of the journey,

  i) the deceleration

  ii) the time taken to stop.

 c) Sketch a graph to show the variation of speed with time for this journey.

 d) Use the graph to calculate the average speed for the whole journey.

Q

Acceleration due to gravity 
When an object falls from rest close to the Earth’s surface, it 
accelerates downwards. The magnitude of this acceleration due to 
gravity, given the symbol g, can be measured by dropping a small 
ball from rest below an ultrasound sensor connected to a data 
logger.

Table 5. Averaged results for the experiment in figure 9 

Time (s) Speed (m s−1) Time (s) Speed (m s−1)

0 0 0.35 3.64

0.05 0.45 0.40 3.64

0.10 1.04 0.45 4.10

0.15 1.36 0.50 4.55

0.20 1.95 0.55 5.36

0.25 2.60 0.60 0.00

0.30 3.12 0.65 0.00

Data loggers can usually be programmed to produce either a 
distance–time graph or a speed–time graph; the latter gives more 
information. 

Table 5 gives the averaged speed–time results for three runs of this 
experiment. The results for 0.60 s and beyond show that the ball 
must have stopped moving somewhere between 0.55 s and 0.60 s. It 
probably hit the bench.

To find the value of g:

1.  Begin by drawing the graph and then constructing the best-fit line 
(there is advice in the Maths skills section on page 12). Notice that 
there are some random errors in the measurements.

2.  Measure the gradient and use it to calculate g. Compare your answer 
with the accepted value.

3.  There is more you can find out from this graph. Think about the 
other quantity that a speed–time graph can give. What will it tell 
you in this experiment?

DP link
You will learn about the 
acceleration due to gravity  
and its determination in  
2.1 Motion and in  
6.2 Newton’s law of gravitation.

ultrasound
sensor

Figure 9. Measuring the 
acceleration due to gravity, g
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Maths skills
Plotting graphs

•  Use sensible scales for your axes: 1:1, 1:2, 1:5 are good; 1:3, 1:6, 1:7 and 1:9 are hard to use.

•  A graph should occupy at least half the grid on the graph paper.

•  To achieve the point above, consider using a false origin (one that is not (0,0)).

•  Mark your data points consistently and clearly, use ×, +, ⊙.

•  All marks on the graph (plots or lines) should be drawn with a sharp pencil.

•  Label axes correctly with the quantity / power of ten and unit, for example distance / 103 m.

Drawing a best-fit line

•  Draw straight lines with a transparent ruler (so you can see all the points at once).

•  Draw curves free-hand, in one movement that you have practised several times without putting 
the pencil to paper. Turn the paper before you start so that your hand is on the inside of the curve.

•  Get a balance of points on each side of the line (whether straight or curved). Make the total 
distance from points to the line as small as possible.

•  If there are error bars on the data, draw the line through all the error bars if possible.

•  Don’t force the line through the origin unless you are sure this is the correct physics for the 
situation. 

Question
9  A cyclist accelerates uniformly from rest to a speed of 9.0 m s−1 in a time of 45 s. Then he 

immediately applies the brakes and stops with uniform acceleration. The braking distance is 27 m.

 a) Calculate, for the first 30 s, 

  i) the acceleration ii) the distance travelled.

 b) Calculate, for the braking, 

  i) the acceleration ii) the time taken to come to rest.

 c) Determine the average speed for the whole journey.

10 Figure 10 shows the speed–time graph for a sprinter in a race.
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 Figure 10. Speed–time graph for a sprinter 

Determine

a)  the acceleration of the sprinter at the start 
of the race

b)  the total distance travelled in 6.0 s

c)  the average speed of the sprinter over the 
first 4.0 s.

Q
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1   Motion and force

1.2 Pushes and pulls 
You may have been taught that a force is a push or a pull that acts on 
something due to another object. In this section you will look at forces: 
what they are and what they do. 

Balanced forces
Imagine a ball resting on a table on the Earth’s surface (figure 11). 
The ball is not moving relative to the table or the Earth even though 
the gravitational pull of the Earth and other forces are acting on it. 
This is because all the forces are balanced. We say that the ball is in 
equilibrium. 

gravitational force of
Earth on ball

force from table atoms
acting on ball

gravitational force of
ball on Earth

force from ball atoms
acting on table

BALL TABLE AND EARTH

Figure 11. Balanced forces between a ball and a table

However, a careful examination of the forces shows that the situation is 
more complex than this. As well as the gravitational effects, the surface 
of the table and the ball are deformed slightly by the gravitational 
forces that are acting. The diagram shows these four forces (the ball 
and the table are separated for clarity): 

•  the weight of the ball (the Earth’s downward gravitational pull  
on it) 

•  the gravitational force of the ball on the Earth upwards (this has a 
tiny effect as the Earth is so large, but it exists)

•  the spring force of the table upwards on the ball as the surface tries 
to return to being flat

•  the spring force of the ball downwards on the table as the ball tries 
to return to being spherical.

The gravitational forces and the spring forces are balanced, so the net 
force (all the forces added together) is zero. 

A crucial point to recognize here is that the directions of the forces are 
discussed as well as their magnitude. Forces are vectors and have both 
magnitude and direction.

DP link
You will learn about forces 
and Newton’s laws of motion 
when you study 2.2 Forces.

Key term
When a force acts on an 
object, the object moves 
if it is free to do so. More 
precisely, the force causes 
an acceleration. Unless, that 
is, some other force prevents 
the motion. 

Internal link
Balanced forces are 
discussed further in the 
context of Newton’s third law 
of motion later in this section, 
and frictional forces are 
covered in Friction effects at 
the end of this section.
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Some more examples of cases in which forces are balanced include:

• an ice cube floating at rest in a glass of water 

•  an aircraft moving at a constant velocity, where the thrust and the 
air resistance are exactly in balance

•  a child pulling a sled at a constant velocity along snow (the 
tension in the rope to the sled is equal to the friction at the snow 
surface).

Newton’s first law of motion
If you live in a part of the world that is very cold in winter, you 
will be very familiar with the sled example above. When a sled is 
pushed on a horizontal surface it can travel for a long distance before 
stopping; the frictional force of the ice on the runners is small. What 
would happen if there were no friction at all? The answer is that 
the sled would continue to move at a constant velocity. This is the 
basis of Newton’s first law of motion. A net force must act before an 
object’s velocity can change (that velocity could be zero if the object 
is initially stationary). The use of velocity rather than speed here 
is crucial because, as you will see when you study circular motion, 
the direction of the force vector relates to the direction of the vector 
change in the velocity.

Key term
Newton’s first law of motion 
states that, when no external 
force acts on an object, the 
object remains stationary 
or continues to move with a 
constant velocity.

Figure 12. A page from 
Newton’s Principia in which 
he discusses the three laws 
of motion (and much more)

Galileo and Newton

Newton was not the first to recognize the relationship 
between force and change in velocity. Galileo and 
others were beginning to come to this conclusion in 
Europe during the 16th century. Before then people 
thought that force had constantly to be supplied to 
enable an object to keep moving. This picture, drawn 
by Diego Ufano, a Spanish military engineer who died 
in 1613, shows how people once thought cannon balls 
moved in the air, running out of “force” just before they 
fall vertically to the ground (figure 13). 

Galileo 
performed 
a “thought 
experiment” 
to help himself 
see what was 
happening. He 
imagined a ball, 

released from rest, on a V-shaped ramp (figure 14). The ball reaches the same height on the right-
hand side of the ramp in a) and b) if no friction acts. What happens if the right-hand side of the 
V is made horizontal? Galileo realized that the ball would roll on for ever—no force, no change in 
velocity.

Newton recognized the importance of the work of earlier scientists to his own thinking. He said: 
“If I have seen further, it is by standing on the shoulders of giants”; he was probably using the idea 
of 12th-century philosopher Bernard of Chartres, who realized that truth almost always builds on 
previous discoveries.

Figure 14. Galileo’s thought experiment

a) b) c)

DP ready Nature of science

Figure 13. Not how cannonballs really travel
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1   Motion and force

Newton’s second law of motion
Force, mass and acceleration are related by:

force = mass × acceleration F = ma

•  Notice that m is a scalar quantity and a is a vector; this is 
permitted, because the mass quantity simply multiplies the vector 
and does not change its direction.

•  A consequence of this is that the direction of a and the direction of 
F are the same. 

•  Only one F is referred to in the equation. This is the resultant  
force or total force if there are two or more forces. You met the 
idea of adding vectors in 1.1 Faster and faster in the “Scalars and 
vectors” section. You can use the drawing or calculation method  
for forces too.

Worked example: Newton’s second law of motion
5. A car of mass 900 kg accelerates from rest to 15 m s−1 in 50 s.

 Calculate the resultant force acting on the car.

Solution

Using v = u + at, a = 
−15 0

50
 = 0.30 m s−2

So F = 900 × 0.30 = 270 N

WE

Mass and weight
A gravitational force acts on any object in the gravitational field of 
another. This is usually only obvious to us when we are considering 
how the pull of gravity—the gravitational force due to the Earth—acts 
on us or any other object on the Earth: in other words, weight. In 
fact, all masses exert a gravitational force on each other. The larger 
the mass, the larger the force. The forces are very small unless we are 
dealing with something the size of a planet or a moon.

For a mass of 1 kg, F = mass × g = 1 × 9.81 = 9.81 N (roughly 10 N).

Is mass constant?

Einstein, in his special theory of relativity, said mass was not 
a constant—and experimental evidence now backs up this 
theory. Einstein showed that observed mass increases when 
speed increases. If you study Option A of the IB Physics Diploma 
Programme, you will look at this phenomenon in detail. However, 
for most of the course, you can assume that mass is constant.

DP ready Theory of knowledge

So, if weight is gravitational pull, what is mass? This is the amount of 
substance in an object. However, although this definition is correct, 
it is not very helpful. In fact, it is difficult to pin down the concept of 
mass exactly other than to say it is the quantity that responds to force 
by accelerating. You can regard mass as a constant that depends on 
the number of atoms in an object, whereas weight can vary over the 
Earth’s surface (because the value of g varies over the surface) and if 
someone makes measurements on the Moon or a nearby planet. 

Key term
Newton’s second law of 
motion states that F = ma 
where F is the resultant force, 
m is the mass, and a is the 
acceleration. 
One newton (1 N) is the force 
that will accelerate a mass of 
one kilogram (1 kg) by one 
metre per second per second 
(1 m s−2). 
The newton has the 
fundamental units kg  m s−2. 
As always, it is important to 
use a consistent set of units 
in calculations.

Key term
Weight is the gravitational 
pull that the Earth exerts on 
an object. 
Newton’s second law of 
motion (Newton 2) helps 
here. Objects accelerate 
downwards near the surface 
in the Earth’s gravity at 
9.81  m s−2. So Newton 2 
indicates that the force F 
acting on the object must 
be equal to the mass m 
multiplied by a.

DP link
You will learn how the 
gravitational force depends 
on mass and distance 
between objects when you 
study 6.2 Newton’s law  
of gravitation and also  
10.2 Fields at work (higher 
level only).

Internal link
We will see another  
way to write the law in  
1.4 Momentum and impulse.
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Practical skills: Verifying Newton’s second law

card light gate

cart

To verify the equation F = ma it is necessary to carry out two experiments: one showing that F ∝ a 

while keeping m constant, and another showing that a ∝ 
m
1

 while keeping F constant.

The same apparatus can be used for both experiments.

F ∝ a

•  The force is applied to the trolley using an elastic thread held at a fixed extension. You can do 
this by keeping your hand in the same position relative to the trolley as the trolley accelerates. 

•  The measurement of the acceleration of the trolley can be made in a number of ways, including 
an ultrasound sensor connected to a computer (programmed to provide a direct readout of the 
acceleration), or a light gate that can time how long it takes the trolley to pass through (in this 
case you need to use the suvat equations to work out the acceleration).

•  Measure the acceleration with one, two and three identical threads of the same initial length in 
parallel (one, two and three equal forces) all extended by the same amount.

•  Plot a graph to show the variation of acceleration with force. You should find that the line is 
(approximately) straight and through the origin. 

•  Think carefully about errors and how to eliminate them. The friction at the axles of the trolley 
is a particular problem. What can you do to the table to eliminate this friction? What would you 
expect a trolley with no resultant friction acting on it to do (think Newton’s first law)?

a ∝ 
m
1

• This time you will keep the force the same for each run.

• Add mass to the trolley and measure the acceleration.

•  This time plot a graph of a against 
m
1

. It should be a straight line again.

Inertial or gravitational mass?

It is possible to think of mass in two ways: 

i)  as the response of an object to the application of a force (in 
other words the smaller the acceleration from a standard force, 

the larger the mass because ∝m
a
1

), or 

ii)  as the response of an object to the gravity field. 

These two descriptions are not the same; they are both physically 
and philosophically different.

Physicists assume that 1 kg of gravitational mass is equivalent  
to 1 kg of inertial mass. 

DP ready Theory of knowledge
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1   Motion and force

Newton’s third law of motion
The concept that underpins this law (which we will call Newton 3; 
the first law will be Newton 1 and so on) is not trivial, no matter how 
short the statement of the law. You may find it helpful to re-read the 
first section of this chapter before going on.

When A exerts a force on B, then B must exert an equal and opposite 
force on A. On the face of it, this is straightforward. The trick comes in 
correctly identifying the pair of forces, known as an action–reaction 
pair.

Go back to the ball sitting on the table from figure 11. There are two 
pairs of forces at work here:

•  pair 1: the gravitational pull of the Earth on the ball, and the 
gravitational pull of the ball on the Earth

•  pair 2: the force of ball on the table, and the force of the table 
on the ball—both arise from the deformation of the one by the 
presence of the other.

Notice that: 

•  within the pair, the magnitudes are the same, but the directions are 
opposite

•  for this case where there is equilibrium, the magnitudes are the 
same for all four forces, but this will not be the case when there is 
acceleration.

Another example is a ball falling under gravity with no air resistance 
(figure 15). 

The Earth exerts a pull on the ball (figure 15). The ball exerts a pull on 
the Earth of the same magnitude and opposite direction. This is an 
action–reaction pair (Newton 3).

The Earth’s pull on the ball leads to the acceleration (Newton 2) that 
we identify as g. The pull of the ball on the Earth gives rise to an 

acceleration of the Earth, but this is tiny because =a
F
m

 (Newton 2) and 

m is very large. (You may also want to consider what happened to the 
Earth when the ball was originally moved into the air. Remember: the 
ball had to be accelerated using a force to move it above the surface.)

Key term
Newton’s third law of motion 
states that every action 
has an equal and opposite 
reaction.

DP link
You will learn about action–
reaction pairs when you 
study 2.2 Forces.

ball

pull of Earth on ball

Earth

pull of ball on Earth

Figure 15. An action and reaction 
pair

Question
11  The acceleration due to gravity near the surface of Titan, a moon 

orbiting Saturn, is 1.3 m s−2. A spacecraft is sent to Titan. It 
contains a payload with a mass of 250 kg.

 a) Calculate the weight of the payload on Earth.

 b) Calculate the weight of the payload in outer space.

 c) Calculate the mass of the payload on Titan.

 d) Calculate the weight of the payload on Titan.

Q
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Estimating the acceleration of the Earth

We can estimate how small such effects on the Earth are. The mass 
of the Earth is about 6 × 1024 kg. What is the effect of a boy jumping 
down from a wall 1 m high? 

As we only need a rough answer, call the mass of the Earth 5 × 1024 kg 
and assume the boy has a mass of 50 kg.

Because the force on the boy and the force on the Earth 
are the same, mEarth × aEarth = mboy × aboy and therefore 

= =
×

×
= −a

a

m

m
5 10

5 10
10Earth

boy

boy

Earth
24

23. In other words, the acceleration of 

the Earth due to the boy is only about 10−22 m s−2.

The skill of making estimates will be an important one for you in 
both your theory classes and your practical work in DP Physics.

DP ready Nature of science

Maths skills: Resolving vectors
To resolve a vector means to identify two vectors that add to give the original vector. For the IB 
Physics Diploma Programme this is limited to two vectors that are at 90° to each other. You will 
need to be able to do this to work out the effect of gravity on objects that are falling while also 
moving horizontally.

An example is the initial velocity of an object that is thrown into the air at an angle θ to the ground.

θ
θ

θ

vertical
component =

v sin    

horizontal
component = v cos   

vector

The vector can be resolved either by drawing or algebraically.

For the scale drawing method, draw the original vector and the two directions along which we want 
to resolve it (usually horizontal and vertical lines) beginning at the start of the vector. Then draw 
lines from the end of the vector parallel to these directions. These lines intersect with the direction 
lines at the ends of the two resolved components of the vector.

Algebraically, when the angle between the horizontal and the original vector is θ, then, by 
trigonometry, one vector is v cosθ in the horizontal direction and the other is v sinθ vertically.

Are Newton’s laws really laws?

In science, the words “theory”, “law” and “hypothesis” have a 
particular meaning that is more defined than in everyday language.

A theory is a model of some part of the universe. It can use facts, laws 
and hypotheses. A theory can be used to make a prediction that can 
be tested by experiment. Theories are often based on earlier theories.

Laws reflect observed patterns of behaviour and often take a 
mathematical form in physics. They usually do not attempt to 
explain an effect, but simply state what always happens.

A hypothesis is a possible explanation about the world that may 
or may not be true. Hypotheses can be tested by experiment and 
rejected if they prove incorrect.

DP ready Theory of knowledge
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1   Motion and force

Friction effects
In the real world, no surfaces are completely frictionless, the wind 
blows and air resistance acts. How do we take account of these in 
calculating motion? 

At a simple level friction can be divided into two types: solid friction 
and fluid friction.

Solid friction is the friction observed when one solid surface is 
dragged over another. Take the case of a book being pulled across a 
table. Friction arises because the atoms in the book cover interact with 
the atoms in the table top. Change the materials and the amount of 
friction will change.

Fluid friction is the drag on objects when they move in gases (air 
resistance) or liquids (viscosity).

Not all friction is wasteful. We make good use of friction in many of 
the devices we use all the time. Imagine walking to school in a world 
with no friction! 

When we consider friction forces, we encounter examples where there 
is more than one force acting on a moving object and the forces act in 
different directions. We need to consider how to deal with the addition 
of vectors when they are not at right angles to each other. This is best 
done using an example. 

DP link
You will learn about friction 
and treating it quantitatively 
when you study 2.2 Forces.  
You may also meet fluid 
friction if you study 
Option B.3 Fluids and fluid 
dynamics.

Internal link
You will find a description of 
the phases of matter in  
3.1 States of matter.

We can take the solution in Worked example 6 one step further and 

divide these equations to show that 
θ
θ

θ= =
T
T

mg
F

sin
cos

tan .

Worked example: Forces acting at angles
6.  A girl is dragging a box across rough ground using a rope. The 

rope is angled upwards at an angle θ to the horizontal. What 
force does she need to exert so that the box moves horizontally 
at a constant velocity?

friction force F

tension in rope T

θ

mg

Solution

According to Newton 1, because there is no change in velocity there 
must be no resultant force. Therefore in the horizontal direction 
the force to the left must be equal to the horizontal component 
of the tension in the rope, and in the vertical direction the weight 
downwards must be equal to the vertical component of the tension 
in the rope. Resolving the forces horizontally shows that F = T cosθ. 
Resolving the forces vertically shows that mg = T sinθ. 

WE
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1.3 Work and energy
In this section we examine the concepts of energy, power and 
efficiency. They form the backbone of physics and engineering because 
it is the transfer of energy from one place to another that allows us to 
extract useful work. The ability of humans to develop tools to transfer 
energy from one form to another has made us an adaptable and 
resourceful species.

Work done
Physicists have a precise, clear meaning for work: work is done when 
a force leads to the movement of an object. This leads to a definition 
of work done and a unit for energy, the joule.

DP link
You will learn about energy 
and work done when you 
study 2.3 Work, energy and 
power.

Maths skills: Trigonometry basics
Sine, cosine and tangent

a

bc

β

α

γ

When γ is 90° (a right angle), sin β = 
b
c
, cos β = 

a
c

, tan β = 
b
a

.

Pythagoras’s theorem

When γ is 90°, c2 = a2 + b2

Sine and cosine rules

For any values of angles α, β, γ :

α β γ
= =

a b c
sin sin sin

 (the sine rule)

and γ= + −c a b ab2 cos2 2 2  (the cosine rule).

Question
12  A block of mass 4.5 kg slides down a ramp at an angle of 30° 

with a constant acceleration. It travels a distance of 2.5 m from 
rest in 5.0 s.

 a) Calculate the acceleration of the block.

 b)  Calculate the frictional force that opposes the motion of the 
block.

30°

Q

Internal link
You will gain an insight into 
how humans use elements 
of the natural world to 
generate electrical energy 
in 6 Generating and using 
energy.
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1   Motion and force

Worked example: Calculating the work done
7.  A force of 15 N acts on a mass and moves it against friction 

through a distance of 25 m in the direction of the force. Find the 
work done.

Solution

W = F × s = 15 (N) × 25 (m) = 375 J.

8.  A railway truck moves on rails that are laid west to east. A force 
of 1.5 kN acts on the truck and it moves 52 m. 

60°

52 m

Calculate the work done if the force acts:

a) along the direction of travel of the track

b) at an angle of 60° to the track.

Solution

a)  Work done = F × s = 1500 (N) × 52 (m) = 7.8 × 104 J or 78 kJ 

b)  The component of force in the direction of motion is F cos 60, 
which is 1500 × cos 60 = 750 N.

 So the work done is 750 × 52 = 39 000 J (39 kJ)

WE Key term
Work done = force × distance 
moved in the direction of the 
force
W = F × s
The unit of work is the joule 
(abbreviated J). One joule of 
work (1 J) is done when a 
force of 1 newton moves an 
object through 1 metre in the 
direction of the force.
The joule is not one of the 
fundamental SI units. From 
the equation, you can see 
that it can also be written as 
newton metres (N m), and 
this can be further written 
as kg  m s−2 × m, in other 
words kg  m2  s−2. 
Notice that energy is a scalar 
quantity; it does not have a 
direction associated with it.

Maths skills: Using standard form in answers to questions
It is best to write the answer to part (a) of Worked example 8 in the 
form 75 kJ or 7.5 × 104 J because using 75 000 J could be taken to 
mean that you know your answer accurately to 5 significant figures. 
As the data in the calculation were to 2 sf it is wrong to imply this 
5 sf level of accuracy.

Question
13  Calculate the work done when a force of 12 N moves an object 

through a distance of

 a) 6.0 m

 b)  6.0 m at 45° to the direction of the force.

Q

Energy stores and pathways
Where does the energy to do work come from? Physicists use the 
concept of the “energy store”. Energy is available for use as work when 
it moves from one store to another. Sometimes the origin of the energy 
is called the “source” and the store to which the energy goes is called 
the “sink”. Here are some examples.

When the north poles of two magnets face each other, as you try to 
push the magnets together you store energy in the magnet system. 
Release the magnets and they fly apart. This repulsion could be 
harnessed to obtain work (two magnets, one on a railway truck and 
one on a fixed part of the track, could move the truck).
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Physics underwent a paradigm shift at the beginning of the twentieth 
century when Einstein suggested that mass was itself a form of energy, 
in his famous equation ∆E = c2∆m. ∆ stands for “change in” and c is the 
speed of light in a vacuum. This equivalence means that the principles 
of conservation of mass and conservation of energy can be combined.

A spring or a rubber band has no ability to do work when unstretched, 
but stretch it in your fingers and it can release its store of energy as a 
catapult.

A camping stove contains propane fuel. When this gas mixes with 
oxygen from the air, the chemical bonds in the two gases are altered, 
releasing energy in the stove flame (figure 16). Often people refer to 
the propane as the store, but it cannot release energy unless oxygen is 
present, so it may be more correct to regard both gases as the store.

There are many types of energy stores:

• chemical (for example, the propane stove described above)

• elastic (for example, the spring described above)

•  electrostatic (energy stored in a system of two electric charges that 
attract or repel when released)

•  gravitational (energy stored in a system of two masses that are attracted 
by gravity where one can be allowed to move relative to the other) 

• kinetic (energy stored in a moving object)

• magnetic (for example, the magnets described before)

•  nuclear (energy stored in atomic nuclei, transferred by radioactive 
decay, nuclear fission or nuclear fusion)

• thermal (energy stored in a hot object).

The principal energy pathways are:

• electrical (a charge moving through a potential difference)

• heating (when there is a difference of temperature)

• mechanical (a force moving an object through a distance)

• radiation (typical wave motion, eg light/radio/sound waves).

Conservation of energy 
When energy transfers from one store to another, observations suggest 
that none is lost provided we are very careful to include every possible 
form of energy in our measurements. This is known as the principle of 
conservation of energy. 

Internal link
Many of these energy 
stores are important for the 
generation and storage of 
energy:

•  electrostatic and 
magnetic – 2 Electric 
charge at work

•  nuclear – 6 Generating 
and using energy

•  thermal – 3 Thermal 
physics

•  global resources –  
6 Generating and using 
energy.

Numerical ways to represent 
energy stores and pathways 
are explored in 6.2 Energy 
resources, where there 
is a discussion of Sankey 
diagrams.

Key term
The principle of 
conservation of energy 
states that energy cannot be 
created or destroyed.

Conservation laws

Some physical quantities are always conserved. These laws are 
of great importance in the philosophy of the subject as well as in 
calculations. The laws include:

• conservation of charge

• conservation of linear and angular momentum

•  conservation of energy (with the proviso that all energy forms 
must be considered).

Similarly, there are some fundamental constants that are thought to 
never change (the charge on the electron is an example). 

DP ready Nature of science

hot water
in pan

pan and
surrounding air

propane +
oxygen

hot water
in pan

thermal store

chemical store

energy pathway:
heating, in this case

pan and
surrounding air

Figure 16. Energy transfer with a 
camping stove
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1   Motion and force

Kinetic energy and work 
In a petrol-driven car, the chemical store of energy consists of the 
liquid fuel + oxygen in the air. It supplies energy that is eventually 
transferred into thermal stores, including raised temperature of the 
friction brakes when the car stops, heated air from air resistance, hot 
tyres from friction, and so on. Such stores probably cannot be used 
again, so this energy is “lost” to us. However, while the car is moving 
the energy that it has is called its kinetic energy. 

The kinetic energy of an object increases when:

• the speed of the object increases for a given mass

• the mass of the object increases for a given speed.

Paradigm shifts

From time to time in science a discovery or suggestion is made that 
is so different from the previous view that it causes a major shift in 
our models of the universe. Examples include: 

•  Galileo Galilei’s observation of Jupiter’s moons, which provoked 
his support for the Copernican view of the solar system

•  Isaac Newton’s work on the implications for the gravitational 
force

•  Albert Einstein’s recognition that time was not an absolute 
quantity but depends on the conditions of the observer.

  

Figure 17. Galileo Galilei (1564–1642), Isaac Newton (1642–1726) and 
Albert Einstein (1879–1955)

These are topics you are likely to discuss not only in your Diploma 
physics lessons but also in theory of knowledge.

DP ready Theory of knowledge

Worked example: Drawing energy stores and energy pathways
9.  An electric cell is connected to a motor that is raising a load. Draw the energy 

stores and the energy pathways for this process. 

Solution

motorelectric cell

raised load
(gravitational

potential store)

environment
thermal storechemical

store

mechanical
pathway

mechanical
pathway

(friction and heating)

electrical
pathway

WE

Internal link
Energy pathways in a 
resource context are 
discussed in 6.2 Energy 
resources.
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Suppose that the car and passengers with a total mass m change speed 
from an initial speed u to a final speed v. This acceleration a takes a 
time t and occurs in a distance s. 

initial speed u

mass m

final speed v

distance s

So the work done W is W = force × s = m × a × s (F = ma has been 
used here to substitute for F).

However, s can also be replaced using the second kinematic equation 
(v2 = u2 + 2as) to give 

 = × ×
−

W m a
v u

a2

2 2

 

Cancelling the a and rearranging gives 

 W = 
1
2

 mv 2 − 
1
2

 mu2 

The symbol used for kinetic energy in DP Physics is Ek.

The kinetic energy of an object of mass m moving at a speed v is  
1
2

 × mass of the object × its speed2. 

This confirms the two predictions of how kinetic energy will vary with 
speed and mass listed on page 23.

Worked example: Calculating change in kinetic energy
10.  A bus of mass 10 000 kg accelerates from a speed of 10 m s−1 to 

a speed of 15 m s−1. Calculate the change in the kinetic energy of 
the bus.

Solution

The change in kinetic energy is 
1
2

 × m × (v2 − u2) =  
1
2

 × 104 × (152 − 102) = 
1
2

 × 104 × (225 − 100) = 6.3 × 105 J

Notice that (152 − 102) is not the same as (15 − 10)2. This is a 
common error: one is 125, the other is 25!

WE

Units of kinetic energy

It is always sensible to 
check that the units of a 
new quantity (in this case, 
1
2

 mv2) have the correct 

fundamental units.

Ignoring the factor 
1
2

,  

which has no units, mv2 is  

kg × (m s−1)2, which expands 
to kg × m2 × s−2. 

This rearranges to  
(kg × m × s−2) × m, which 
is N × m. In other words, it 
is force × distance; this was 
our original definition of 
work done.

DP ready
Approaches  
to learning

Question
14 Calculate the kinetic energy of: 

 a) a tennis ball of mass 58 g moving with a speed of 65 m s−1 

 b)  a boy on his bicycle of total mass 75 kg moving with a speed 
of 8.5 m s−1. 

15 Estimate the kinetic energy of:

 a)  a girl jumping off a wall of waist height when she reaches 
the ground

 b) a car being driven at the speed limit

 c) a bird in normal flight. 

Q

( (
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Gravitational potential energy and work
The term “potential” in physics requires care. It also occurs in the term 
“potential difference” in electrical theory (often abbreviated to pd). 
Some books emphasize that elastic energy (in a compressed spring, for 
example) is elastic potential energy in the sense that the spring has 
not yet been released to make its energy available. 

Gravitational potential energy (gpe, with the symbol Ep) is energy 
stored in a system formed by the gravitational interaction of two 
(or more) objects. All massive objects (meaning objects with mass, 
not necessarily very big ones) attract each other by gravity and will 
therefore move towards each other if they can. (Gravitational repulsion 
is never observed.) When the two objects are held apart, they have 
the potential to move back together, and the energy released from 
the system can be transferred into useful work. A good example is 
a hydroelectric power station: water is allowed to flow downwards 
through a turbine. The turbine gains kinetic energy (it rotates), 
transferred to it from the kinetic energy of the water that in turn comes 
from the water’s store of gravitational potential energy.

In this and other examples of transfer of gravitational potential energy 
(gpe), you should carefully analyse the sources and endpoints of 
energy and the transfer pathways for the energy. As with kinetic 
energy, your thinking about gpe should be quantitative as well as 
qualitative. We begin with the definition of work done and extend it to 
the case of a mass just above the Earth’s surface (figure 18).

The mass is a distance h above the Earth’s surface. Suppose that the 
acceleration due to gravity over this distance is effectively constant (it 
decreases as we move away from the surface but we can ignore this for 
small height changes). The work done is force × distance, as usual, so 
in this case work done = weight × height, which is mg × h

so change in gpe = mass × acceleration due to gravity × vertical 
distance change.

When the object moves away from the Earth’s surface the change in 
gpe is positive; when the movement is towards the surface the change 
is negative and the object loses gpe.

mass mweight mg

h

Figure 18. Gravitational 
potential energy of a mass 
above the Earth’s surface

DP ready Approaches to learning

Making estimates

One of the command terms used in IB Physics Diploma Programme 
questions is “estimate”. When you are asked to estimate, you may 
be expected to “guess” some, or all, of the quantities involved in the 
problem, as in the estimate of the acceleration of the Earth in 1.2 
Pushes and pulls. The point of an estimate is to give a power-of-ten 
value for the answer, not an exact answer. 

Outside examinations, use the internet to research reasonable values 
of quantities you do not know. 

It is sensible to use estimates for physical constants. Use 10 m s−2 for 
g rather than 9.81 m s−2 if you just need a power-of-ten answer.

Units of gravitational 
potential energy

Gravitational potential energy 
is weight × height, so this is 
a force × distance expression 
and so is equivalent to work 
done in joules.

DP ready
Approaches  
to learning

DP link
You will study kinetic energy 
and gravitational potential 
energy in 2.3 Work, energy 
and power.
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Power
Two cyclists, each with the same total mass of 95 kg, ride up the same 
hill. The hill is 55 m high. This means that they both transfer 51 kJ 
(mgh = 95 × 9.81 × 55) to their store of gravitational potential energy. 
Cyclist A takes five minutes to climb the hill and cyclist B takes three 
minutes longer. A is transferring energy into the gravitational form 
faster than B; we say that A is more powerful than B. Power is the rate 
at which energy is transferred. In this case, cyclist A transfers energy to 

the gravitational field at a rate of 
51000
5 60

170 W
×

= ;  

B does so at 106 W 51000
8 60×

.

Power can be expressed in another way.

The expression for work done is force × distance. So power must be 
×force distance
time 

. But this is also ×force
distance

time
, in other words  

force × speed. In symbols, power P can be expressed as P = F × v.

Key term
energy transferred

time taken for the transfer
power =  

The unit of power is the watt 
(symbol W). 1 watt ≡ 1 joule 
per second (1 J  s−1).
1 W is therefore also  
1 N  m s−1, which in 
fundamental (SI) units 
is  kg  m s−2 × m × s−1 or 
kg  m2  s−3.
The watt is a small unit so you 
should become familiar with 
expressing power in kW (in 
domestic situations) and MW 
or GW (for energy generation 
on a local or national scale).

Key term
Changes in kinetic energy 
and gravitational potential 
energy

ΔEk = 
1
2

 m (v2 − u2) 

ΔEp = mgΔh 
where m is mass, v and u 
are final and initial speed, 
g is the acceleration due to 
gravity and Δh is the change 
in vertical height. Remember 
that Δ means “change in”.

Worked example: Kinetic and gravitational potential energy 
calculations
11.  A stone of mass 0.50 kg is dropped from rest from a point 2.5 m 

above the ground. Air resistance is negligible. Calculate the 
speed of the stone when it hits the ground. Take g = 9.81 m s−2.

Solution

This problem can be solved in two ways: either by using energy 
ideas or by using the suvat equations from 1.1 Faster and faster. The 
equations can be used here because the acceleration is uniform. The 
solution shown uses energy ideas.

The loss of gpe when the stone falls to the ground is  
mg∆h = 0.50 × 9.81 × 2.5 = 12.26 J

This loss of gpe must equal the gain in kinetic energy so  
1
2

 mv2 = 12.26 J. So v
12.26 2

0.50
=

×
 = 7.0 m s−1.

(Notice that you do not even need the value for mass here. Equating  

the two energies gives =mv mgh
1
2

2  so the mass m cancels to give 

=v gh
1
2

2  and therefore =v gh2 .)

WE

DP link
Later in the IB Physics 
Diploma Programme  
(10.1 Describing fields) 
you will learn to distinguish 
between “gravitational 
potential” and “gravitational 
potential energy”. The former 
is the energy stored in the 
two-object system per unit 
mass and is quite different 
from gpe.

Question
16  A stone has a mass of 3.5 kg. Assume g = 9.81 m s−2. Calculate 

for the stone:

 a)  the gravitational potential energy as it is released from rest 
from a cliff 7.8 m above the sea surface

 b) the kinetic energy when it has fallen vertically through 3.6 m 

 c) the kinetic energy just before it hits the sea.

Q

( (
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Worked example: Calculating power
12.  A lift door of width 1.2 m requires a force of 250 N to open it. 

An electric motor opens the door in a time of 6.0 s. Calculate the 
power that the motor must deliver.

Solution

The speed at which the door opens is 
1.2
6.0

 = 0.20 m s−1. The power 
delivered by the motor must be 

250 × 0.20 = 50 W.

WE

Efficiency
The two cyclists described before transferred energy at different rates, 
but that was not the whole story. We calculated only the rate at which 
energy transferred into the gravitational potential energy store. There 
are many other ways in which energy transferred by the rider is lost: to 
air resistance, to rolling resistance of the tyres, to the chain connecting 
the pedals to the rear wheel, in the gear train, and in the muscles 
of the rider. All these factors reduce the efficiency of the system. 
Efficiency is the ratio of the useful work done by a system to the total 
energy transferred in all forms.

Key term
You will often see the 
phrase rate of … used. 
“Rate of transfer of energy” 
is an example in Worked 
example 13. This means the 
energy supplied per second.

So power is the rate of 
transfer of energy because it 
is the energy transferred in 
one second.

Key term
Efficiency can be defined in 
terms of either the energy 
transferred or the power 
input and output:

efficiency =
useful work done

total energy transferred

or
useful power output

total power input
 

Efficiency has no units 
because it is a ratio of 
two identical quantities. 
Efficiency can be expressed 
as a fraction, as a decimal 
number between 0 and 1, or 
as a percentage.

Worked example: Calculating efficiency
13.  An athlete on an exercise bicycle pedals against a resistance 

force in the bicycle of 25 N. Her speed on the bicycle is 
equivalent to a ground speed of 12 m s−1.

 a)  Calculate the rate of transfer of energy to the bicycle by the 
athlete.

 b)  The athlete’s muscles have an efficiency of 20%. Calculate 
the rate at which energy is supplied to her muscles by her 
body.

Solution

a)  P = Fv = 25 × 12 = 300 W (3.0 × 102 W is better, to get the 
significant figures to match).

b)  She outputs 0.3 kW of energy each second. This is 20% 
1
5

 of 

the chemical energy required from her body, so her body supplies 
0.3 × 5 = 1.5 kW (or 1.5 kJ every second) to her muscles.

WE

DP link
You will learn about power and 
efficiency when you study 
2.3 Work, energy and power.

Maths skills: Powers of ten
• Powers of ten are an effective way to avoid using large numbers 

of zeroes: 3 × 108 m s−1 is a better way to express the speed of 
light than 300 000 000 m s−1.

• Powers of ten allow you to manipulate large and small numbers 
with ease. 

  A thermal power station produces 2 × 108 W of electrical power. 
When 1 kg of fuel is burnt it produces 8 × 107 J of energy. The 
efficiency of the station is 20%.

  Calculate the mass of fuel burnt in one second. 

The station requires 2 × 108 × 
100
20

 = 109 J of energy to be supplied 
each second.
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  The mass of fuel = 
energy required each second 

energy from one kilogram
1 10
8 10

9

7
=

×
×

 = 13 kg 

in each second.

• Science has a list of prefixes that can be added in front of units 
to avoid even the powers of ten. The full list is: 

Prefix Unit Value
peta P 1015

tera T 1012

giga G 109 billion
mega M 106 million

kilo k 103 thousand
hecto h 102 hundred
deca da 101 ten

deci d 10−1 tenth

centi c 10−2 hundredth
milli m 10−3 thousandth

micro µ 10−6 millionth
nano n 10−9 billionth
pico p 10−12

femto f 10−15

 Italics represent prefixes in the SI system that are seldom used.

Maths skills: Rules for 
manipulating powers of 
ten (indices)
100 = 1

10m × 10n = 10m + n 

10m ÷ 10n = 10m−n 

(10m)n = 10m × n

Question
17  A 75 W electric motor raises a mass of 2.5 kg through a height 

of 1.8 m in 8.0 s.

 Calculate: 

 a) the electrical energy supplied to the motor

 b) the gravitational potential energy gained by the load

 c) the efficiency of the motor.

Q

1.4 Momentum and impulse 
Up until now, Newton 2 has been expressed as F = ma. This can be 
rewritten in terms of change in velocity:

   = × = ×F m m
v
t

change in velocity
time taken for change

.

∆ stands for “change in …”. So ∆v is the change in velocity and ∆t 
is the change in time. Another rearrangement of the same equation 
yields: F × ∆t = m × ∆v and something interesting appears. Think about 
the case of an object falling to the Earth. Because there is an action–
reaction pair, Newton 3 tells us that the forces acting on the object 
and the Earth are the same in magnitude (F). The two forces must 
obviously act for the same time (∆t) and therefore everything on the 
left-hand side of the equation is the same for both bodies. This means 
that the quantity (mass × change in velocity) must also be the same for 

DP link
You will learn about 
momentum and impulse 
when you study 
2.4  Momentum and 
impulse.

∆
∆
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both bodies. This new quantity is of such importance in science that it 
is given its own name: impulse. 

It leads us to another new, important quantity: momentum. 
Momentum is the product of (mass × instantaneous velocity) for an 
object. 

Conservation of momentum
The total momentum of a system remains constant providing no 
external forces act on it.

This law comes in two parts, and it is important not to overlook the 
second part, “providing no external forces act”, because when a force 
outside a system acts on it, then the momentum can, and usually does, 
change.

When two railway trucks collide then at the moment of collision the 
momentum is unchanged, but as friction in the form of air resistance 
begins to act on both trucks, then the momentum of the system 
gradually decreases as energy is transferred into the air. 

Momentum is one of the quantities in science that is always 
conserved. The total momentum is never lost, whatever the nature of 
the interaction. If you think some may have disappeared, you are not 
looking carefully enough at the problem. 

Key term
Momentum = mass × velocity

The units of momentum are 
kg m s−1.

The symbol p is often used 
for momentum and Δp for 
momentum change.

Momentum is a vector 
quantity; always specify its 
magnitude and direction.

Impulse = force × time for 
which it acts

Impulse = change in 
momentum

Internal link
You meet conservation laws 
a number of times in this 
book, including conservation 
of charge (2.1 Electric 
fields and currents) and 
conservation of momentum 
(3.2 Gas laws, discussing 
the motion of gas particles).

Worked example: Conservation of momentum in collisions
14.  Figure 19 shows two trolleys approaching each other. After 

colliding, they stick together.  
Calculate the final velocity of the combined trolleys immediately 
after the collision.

mass 2.0 kg;
velocity 2 m s−1 to right

mass 3.0 kg;
velocity 2 m s−1 to left

mass 5.0 kg; velocity ?? m s−1 to ??

Figure 19. Trolley problem

Solution

The initial momentum (treating movement to the right as positive) =
m1u1 = m2u2 = 2 × (+2) + 3 × (−2) = 4 − 6 = −2 kg m s−1 

(this means the total momentum is 2 kg m s−1 to the left).

After the collision, the momentum must be unchanged, but now the 
mass is 2 + 3 = 5 kg.

The final velocity = 
momentum
total mass

2
5

=
−

 = −0.4 m s−1. This is negative 

so the joined trucks are travelling at a speed of 0.4 m s−1 to the left.

WE
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Energy changes in collisions 
Look again at the example of the two trolleys colliding in Worked 
example 14 on page 29. Before the collision the two trolleys had 

a combined kinetic energy of × × + × × = + =
1
2

2 2
1
2

3 2 4 6 10 J2 2 . 

Remember that energy is a scalar and so there is no reason to consider 

the direction of the trucks.

After the collision the combined mass of 5 kg had a speed of 0.4 m s−1. 
So the final kinetic energy was 0.40 J. 

When energy is lost in a collision it is known as an inelastic collision. 
When energy is neither gained nor lost the collision is known as 
elastic. Where energy is input to the system during the collision, it is 
called a superelastic collision or explosion.

For the colliding trolleys, although the momentum of the system was 
conserved, the kinetic energy was not. Where has it gone? The answer 
is that the kinetic energy has transferred into several energy sinks. 
When the trucks collided, energy was used to operate the coupling that 
joins them together, sound energy was transferred to the air and parts of 
the truck mechanisms may have deformed, permanently or temporarily. 
All these changes require an energy transfer. Most or all of this energy 
will eventually find its way into a thermal (heat) form and become lost 
to us. For example, the energy transferred into sound waves will be 
dissipated in the air or nearby objects, leading to very small increases in 
temperature, which we cannot access to do useful work. 

DP link
You will learn about energy 
changes in collisions in  
2.4 Momentum and 
impulse.

Key term
In an elastic collision: 
momentum is conserved 
and energy is conserved.

In an inelastic collision: 
momentum is conserved but 
energy is transferred out of 
the system.

In a superelastic collision: 
momentum is conserved but 
energy is transferred into 
the system.

Worked example: Conservation of kinetic energy in collisions
15.  A stone of mass 5.0 kg slides across ice on a pond and collides elastically at a speed of 

0.20 m s−1 with a stone also of mass 5.0 kg. Calculate the final speeds of both stones after the 
collision.

Solution

Initial momentum of the stone is p = mv = 5.0 × 0.20 = 1.0 kg m s−1  

Initial kinetic energy of system Ek = 
1
2

 mv2 = 
1
2

 × 5.0 × 0.202 = 0.10 J

If after the collision the original stone has mass m1 and speed v1, there are two equations, one for 
final momentum and one for final kinetic energy: 
1.0 = m1v1 + m2v2 

0.1 = 
1
2

 m1v1
2 + 

1
2

 m2v2
2 

The solution of these equations is that either v1 = 0 and v2 = 0.2 m s−1 or that v2 = 0 and  
v1 = 0.2 m s−1. The second solution can be discounted (it is as though there were no interaction). 
The first solution says that the final speed of the second stone is the same as the original speed 
of the first stone. The first stone stops completely, and the second stone moves off in the same 
direction at the original speed. This is an elastic collision as required.

WE

Question
18  A 12 kg mass travelling to the left at 7.5 m s−1 collides with a 

3.0 kg mass travelling to the right at 5.0 m s−1. The masses stick 
together when they collide and continue along the original line.

 a)  Calculate the initial momentum of the 12 kg mass and the 
3 kg mass.

 b) Calculate the initial total momentum.

 c) Calculate the final velocity of both masses.

Q
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Question
19  Railway truck A has a mass of 800 kg and railway truck B has a 

mass of 1600 kg. Truck A travels towards truck B at a speed of 
8.0 m s−1. Truck B is initially stationary. The trucks join during 
the collision.

 a)  Calculate the speed of the trucks immediately after the 
collision.

 b)  Calculate the total kinetic energy lost during the collision.

20  A hammer of mass 5.0 kg hits a thin vertical piece of wood that 
has a mass of 0.75 kg. The speed of the hammer is 2.5 m s−1 
when it hits the wood, and it does not bounce. The wood is 
driven 7.5 cm into the ground.

 a)  Calculate the vertical speed of the wood immediately after 
the hammer hits it.

 b)  Determine the average frictional force acting on the wood 
due to the ground.

Q

Motion in a circle
Many objects move in a circular path. Obvious examples are the path 
of the Moon or a satellite around the Earth and of the Earth around 
the Sun. (Although these orbits are not perfectly circular, they are 
close enough for our purposes.) Likewise, the path of an object being 
whirled around in a horizontal circle springs to mind. 

tension in string

centripetal force

Figure 20. Centripetal force for an object on a string

Figure 20 shows the situation for an object rotating with a constant 
speed at the end of a string. What keeps the object rotating? The 
horizontal component of the tension in the string is providing a force 
inwards towards the centre of the circle. This force, which is keeping 
the object in its orbit, is the centripetal force. 

Looking at all the forces acting on the object leads to figure 21.

mg

T θ

Figure 21. The forces acting on the rotating object

The centripetal force is provided by the horizontal component T sin θ, while 
the vertical component of the string tension balances the weight force, 
so T cos θ = mg. This explains why the string will never be completely 

DP link
You will study quantitative 
details about centripetal 
motion when you study  
6.1 Circular motion.
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Fictitious forces

You will sometimes see in older books reference to a “centrifugal 
force”. The idea of centrifugal force is that it acts outwards. At first 
sight this appears quite reasonable: when you are in a car going 
around a circle then you feel flung outwards from the centre of the 
circle. However, this feeling is misleading. What you are actually 
feeling is an effect of Newton 1—you ought to be going in a straight 
line and the car is forcing you into the circular path. The car 
exerts a force on you and you experience the reaction to this force. 
Newton 3 tells you that this is opposite to the action force and so 
the direction of the reaction is away from the centre. 

Looking at the situation from above the car shows you what is 
happening (figure 23). 

real centripetal force
supplied by friction at tyres

direction of car

straight on direction
at this instant

car

Figure 23. Apparent “centrifugal force”

DP ready Theory of knowledge

horizontal, as some vertical component of T always has to compensate 
for the weight of the rotating object. What determines the size of the 
component of the force that acts to keep the object rotating in this way?

The centripetal force is increased when: 

• the speed of the object or the mass of the object is increased

• the radius of the circle is reduced.

Circular motion is an example of a vector velocity that is not constant. 
The object has a constant speed, but the velocity is always changing 
(figure 22). 

force acts at right angles
to direction of travel

velocity changes

change in direction
no change in speed

Figure 22. The centripetal force acts at right angles to the instantaneous velocity
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Chapter summary 
Make sure that you have a working knowledge of the following concepts and definitions:

 The definitions of distance, displacement, speed, velocity and acceleration and the differences 
between average and instantaneous values of these quantities.

 Distance–time, speed–time, displacement–time and velocity–time graphs can be interpreted to 
describe motion.

 The derivation and use of the suvat (kinematic) equations.

 There are practical methods for making an estimate of the acceleration due to gravity.

 Balanced forces cancel each other out, leaving a body in equilibrium, and forces add to produce 
one resultant force.

 Mass corresponds to the amount of matter in a body, and weight is the gravitational force acting 
on a body.

 Newton’s three laws of motion are:

  1.  every body continues in its state of rest or uniform motion unless external forces act on it

  2.  the acceleration a of an object of mass m is related to the force F by F = ma or by = ×F m
v
t
 

where v is the speed of the object and t is the time

  3.  every action force has an equal and opposite reaction force.

 Energy is available for use as work when it transfers between energy stores.

 Work done = force × distance moved in the direction of the force.

 Power is the rate of change of energy with time =
E
t

.

 Efficiency is 
useful work done

total energy transferred
or

useful power output
total power input

.

 Energy is transferred from an energy store through an energy pathway to an energy sink.

 Energy is conserved when all final forms, including mass, are taken into account.

 The kinetic energy Ek of an object of mass m moving at speed v is 
1
2

 mv2. 

  The change in gravitational potential energy ΔEp of an object of mass m is +mgh when the object 
is raised through a distance h in a gravitational field of strength (acceleration due to gravity) g.

 Momentum = mv and impulse = F × Δt, and momentum is conserved.

  In inelastic, elastic and superelastic collisions, the system respectively loses, retains and gains 
energy.

  For an object to move in a circle, a centripetal force must act on the object towards the centre of 
the circle, and centripetal force is increased if the speed or mass of the object is increased or if the 
radius of the circle is decreased.

Additional questions
 1. A motorboat sails with a velocity of 8.0 m s−1 due north. The wind adds a velocity of 6.0 m s−1 

due east. Calculate the overall velocity of the boat in the water. Sketch a diagram to show the 
direction.

 2. Two displacements have magnitudes of 18 m and 6 m. Calculate the greatest and least distances of 
travel that these displacements added together can represent.

 3. A force of 9 N and a force of 12 N act on an object. The angle between the forces is 90°.

  a) Determine, using a scale drawing, the resultant of the two forces.

  b) State how it is possible for the two forces to give a resultant of (i) 3 N and (ii) 21 N. 

∆
∆

∆
∆

( (
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 4. A lorry moves from rest with a constant acceleration of 0.35 m s−2. The mass of the lorry is 7000 kg. 

  a) Calculate the time taken for the lorry to reach a speed of 17 m s−1.

  b) Calculate the distance travelled by the lorry in reaching the speed of 17 m s−1.

  c)  Calculate the initial force required to accelerate the lorry.

  d)  In practice, air resistance acts on the lorry, and the magnitude of the resistive force increases 
with speed. Suggest what this implies for the speed of the lorry.

 5. A runner completes a marathon, a distance of 42.2 km, in a time of 3 hours and 30 minutes.

  a) Calculate, in s, the time taken for the runner to complete the marathon.

  b) Determine the average speed of the runner.

 6. A car is initially moving at 32 m s−1. When the brakes are applied its acceleration is −4.6 m s−2.

  a) i)  Calculate the time taken for the car to stop .

   ii) State the assumption you made in (a)(i).

  b)  The mass of the car is 800 kg. Calculate the resultant force acting on the car.

 7. Explain the difference between:

  a) energy and power

  b) momentum and impulse

  c) mass and weight.

 8. 
A

B

C

t
0

v

  The graph shows the variation of velocity with time for a ball that bounces vertically after release 
from rest above the ground.

  a) Explain why the gradient of line OA is equal to the gradient of line BC.

  b) Outline why the value of v at B is negative.

  c) Explain why the velocity at B is less than the speed at A.

  d)  The ball has a mass of 0.25 kg and is released from 1.5 m above the ground. After the first 
rebound the ball reaches a height of 1.2 m above the ground.

   Determine:

   i)  the speed of the ball immediately before the first impact

   ii) the speed of the ball immediately after the first impact.

 9. A motor vehicle of mass 950 kg is claimed to travel a distance of 25 m when it stops on a 
horizontal road from an initial speed of 18 m s−1.

  a) Determine the average deceleration of the vehicle.

  b) Calculate the average frictional force that acts on the vehicle.

10. In a test of a motor vehicle’s safety, the vehicle is stopped in a distance of 5.5 m from a speed 
of 28 m s−1. A test dummy of mass 65 kg is wearing a seat belt that allows the dummy to move 
0.50 m relative to the vehicle.

  a) Determine the deceleration of the dummy.

  b) Calculate the resultant force that acts on the dummy.
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11.  An aircraft has a total mass of 3.2 × 105 kg. It is powered by engines that have a total maximum 
thrust of 1.1 MN.

  a) Calculate the initial maximum acceleration of the aircraft, ignoring frictional forces.

  The aircraft starts its take-off from rest and has a take-off speed of 95 m s−1. 

  b) Calculate the time to reach take-off speed, ignoring frictional forces.

  c)  In practice, the frictional forces reduce the acceleration of the aircraft to 2.5 m s−2. Calculate 
the mean total frictional force that acts on the aircraft during take-off.

  d) Calculate the minimum length of runway required.

  e)  The aircraft travels at a constant velocity and at a constant height after take-off. Explain, with 
reference to horizontal and vertical forces, how this is achieved.

12. A trolley of mass 60 kg is pushed 25 m at a constant speed up a ramp by a force of 55 N acting in 
the same direction as the direction of motion. The ramp is 2.0 m high.

  Calculate:

  a) the work done pushing the trolley up the slope

  b) the change in gravitational potential energy of the trolley

  c) the energy wasted in friction.

13. A truck in a fairground ride of total mass 1400 kg moves at an initial speed of 2.0 m s−1 before 
descending through a vertical distance of 50 m to reach a final speed of 28 m s−1. The truck travels 
on a track of length 70 m in this motion.

  a) Calculate the loss of gravitational potential energy of the truck.

  b) Determine the change in kinetic energy during the motion.

  c) Determine the average frictional force on the truck during its descent.

14. A motor vehicle travels along a horizontal road. When the car travels at a constant velocity of 
10 m s−1, its effective power output is 1.8 × 104 W. A resistive force acts on the vehicle. This 
resistive force consists of two components. One is a constant frictional force and is of magnitude 
250 N. The other is the air resistance force and is proportional to the car’s speed.

  a)  Determine the total resistive force acting on the vehicle when travelling at a speed of 10 m s−1.

  b) i)  Calculate the force of air resistance when the vehicle is travelling at 10 m s−1.

   ii) Calculate the force of air resistance when the vehicle is travelling at 5.0 m s−1.

  c)  Calculate the effective output power of the vehicle when it is moving at a constant speed of 
5.0 m s−1.

15. Estimate the vertical distance through which a 2.0 kg mass would need to fall to lose the same 
energy as a 35 W lamp will radiate in 90 s.
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